

HALFEN Adjustable Cantilever REVOLUTION IN TUNNEL PIPE SUPPORT

HALFEN Adjustable Cantilever

The advantages at a glance

The HALFEN Adjustable Cantilever combines the established high load bearing of the medium duty system with much faster installation. Specifically designed for tunnels or other areas with a curved or inclined substrate. It is not necessary to know the cantilever angle at the time of design.

ONE PART FOR ALL LOCATIONS, DRAMATICALLY REDUCED COMPLEXITY

- > suitable for pipe clamps, shoes and cable trays
- > can be used for laid or suspended pipes
- > takes up site tolerance. Cope with changes due to site conditions

NO CUSTOM CANTILEVERS REQUIRED, NO ANGLES TO MEASURE

- > simplified design
- > no risk of custom cantilevers not fitting
- > rapid delivery of stock item = no custom fabrication lead time

Introduction

The KON 41/V cantilever is freely adjustable from an angle of -56° to $+56^{\circ}$, and can be fixed to curved castin channel or surface-mounted framing channel or directly to the tunnel wall – including curved or inclined surfaces.

KON 41/V is made without welding, and is composed of a HALFEN Framing channel 41/41 cantilever arm and an adjustable HVT rear bracket. The HVT rear bracket may also be used separately as a fixed support connection element in the HALFEN 41 Framing Channel System to restrain the rotation of a beam, unlike hinge connection elements.

The cantilever is available in three standard lengths. Custom lengths are also available.

The KON 41/V cantilever is easily set to the correct angle by loosening the serration plates. The bracket is set to the required angle, then the assembly is simply re-tightened.

HALFEN Adjustable Cantilever KON 41/V

KON 41/V Product overview							
	Order no.	Item name	Item description				
Sets - Assembled							
	0310.300-00001	KON 41/ V FV L=245 mm Adjustable Cantilever. complete, assembled.	Complete set. Fully assembled.				
	0310.300-00002	KON 41/ V FV L=345 mm Adjustable Cantilever. complete, assembled.	Complete set. Fully assembled.				
	0310.300-00003	KON 41/ V FV L=495 mm Adjustable Cantilever. complete, assembled.	Complete set. Fully assembled.				
Components - for assembly							
	0310.310-00001	KON 41/ V- FV Rear bracket set of Adjustable Cantilever - with toothed plates and assembly bolts.	Requires arm for assembly.				
	0310.320-00001	KON 41/ V-FV 245 mm arm only of Adjustable Cantilever	Arm only. Requires rear bracket set for assembly.				
	0310.320-00002	KON 41/ V-FV 345 mm arm only of Adjustable Cantilever	Arm only. Requires rear bracket set for assembly.				
	0310.320-00003	KON 41/ V-FV 495 mm arm only of Adjustable Cantilever	Arm only. Requires rear bracket set for assembly.				
Spares							
the second se	0310.330-00001	KON 41/V- FV spare toothed plate for adjustable cantilever	FV Toothed plate. Single spare, if required				
Components and sets in stainless steel (A4) are available on request							

FV = hot-dip galvanized A4 = stainless steel

 * Note – order end caps separately, if required

HALFEN Adjustable Cantilever KON 41/V

KON 41/V

The KON 41/V is the latest addition to the family of adjustable fixing products, providing the designer with elegant, load-tested solutions, while also giving the contractor a rapid and reliable install, which allows for site tolerances.

Design example \rightarrow see page 8.

Maximum allowable and design forces

Load

F[kN]

allow. load

 F_{Rd}

allow. load

 F_{Rd}

allow. load

 F_{Rd}

Length L

[mm]

257

357

507

Cantilever disposition [mm]

 F_2

٨

 F_2

2.89

4.04

1.72

2.41

1.07

1.50

Δ/2 Δ/2

 F_1

5.55

7.76

3.44

4.82

2.15

3.00

 F_3 F_3

3 × Δ/3

 F_3

2.77

3.88

1.72

2.41

1.07

1.50

 F_4

1.85

2.59

1.15

1.61

0.72

1.00

Connector reaction forces for the maximum allowable and design forces						
Length L	Load	F_{q} F_{q} $\Delta/2$ $\Delta/2$	F_2 F_2 F_q Δ	$\begin{array}{c c} F_{Z} & \downarrow F_{3} \downarrow F_{3} \\ \hline & \downarrow \\ F_{Q} & 3 \times \Delta/3 \\ \hline \end{array}$	$ \begin{array}{c c} F_z & F_4 F_4 F_4 \\ \hline \\ F_q & 4 \times \Delta/4 \\ \hline \end{array} $	
[mm]	F[kN]	F ₁	F ₂	F ₃	F ₄	
257	allow. load F_Z	6.83	4.99	6.83	6.83	
	F _{Z,Rd}	9.57	6.99	9.57	9.57	
	allow. load F_Q	5.55	2.89	5.55	5.55	
	F _{Q,Rd}	7.76	4.04	7.76	7.76	
357	allow. load F_Z	5.40	4.14	5.40	5.40	
	F _{Z,Rd}	7.56	5.79	7.56	7.56	
	allow. load F_Q	3.44	1.72	3.44	3.44	
	F _{Q,Rd}	4.82	2.41	4.82	4.82	
507	allow. load F_Z	4.45	3.66	4.45	4.45	
	F _{Z,Rd}	6.23	5.13	6.23	6.23	
	allow. load F_Q	2.15	1.07	2.15	2.15	
	F _{Q,Rd}	3.00	1.50	3.00	3.00	

HALFEN Adjustable Cantilever KON 41/V Calculation Example

Calculation of the adjustable cantilever KON 41/V is based on the static calculation models as shown in the figures. The example is based on a cantilever with two mounted pipes of different diameter and a cable tray. The example is calculated with design values.

F_{Z,2,d}

F_{x,2,d}

49

 N_{Ed}

M_{y,2,d}

130

170

F_{Z,1,d}

M_{y,1,d}

129.5

Loads:

 $\begin{array}{ll} F_{Z,1} &= 0.95\,kN \\ F_{X,1} &= 0.10\,kN \\ F_{Z,2} &= 1.90\,kN \\ F_{X,2} &= 0.20\,kN \\ q_Z &= 1.10\,kN/m \end{array}$

Design loads:

F _{Z,1,d}	$= 1.4 \cdot F_{Z,1}$	= 1.33 kN
F _{X,1,d}	$= 1.4 \cdot F_{X,1}$	= 0.14 kN
M _{Y,1,d}	$= 2.065 \cdot F_{X,1,d}$	= 0.14 kNcm
F _{Z,2,d}	$= 1.4 \cdot F_{Z,2}$	= 2.66 kN
F _{X,2,d}	$= 1.4 \cdot F_{X,2}$	= 0.8 kN
M _{Y,2,d}	$= 2.065 \cdot F_{X,2,d}$	= 0.58 kNcm
q _{Z,d}	$= 1.4 \cdot q_Z$	= 1.54 kN/m

Calculation model 1 for design of:

HZM 41/41 or HM 41/41 profile:

shear forces at infinite distance to bolt 2 from both sides

$$V_{Z,Ed}^{L} \leq V_{Z,Rd}$$

 $V_{Z,Ed}^{R} \leq V_{Z,Rd}$

bending moment above bolt 2, considering shear force on both sides $M_{Y,Ed} \le M_{Y,Rd}$ (with $V^{L}_{Z,Ed}$) ρ if required $M_{Y,Ed} \le M_{Y,Rd}$ (with $V^{R}_{Z,Ed}$) ρ if required

normal force on both sides of bolt 2 $N^{L}_{Ed} \leq N_{Rd}$ (ρ if required) $N^{L}_{Ed} \leq N_{Rd}$ (ρ if required)

491

Calculation model 1

R_{1,Ed}

Z Bu

NEd -4.35

77

Bolt 2 (S2)

F_{x,1,d}

61.5

R_{2,Ed}

Bolt 1 (S1)

HALFEN Adjustable Cantilever KON 41/V

We provide technical support for planning and calculating of all assembly products. Please refer to your local sales company. Contact information can be found at www.halfen.com

Calculation model 2

Calculation model 2 for calculation of connector forces:

 $F_{Z,Ed} \le F_{Z,Rd}$ $F_{Q,Ed} \le F_{Q,Rd}$

The values are adopted from the tables "maximum forces" and "connector reaction forces" normalization according $f_{\rm y}.$

HVT Connector:

According to the first design criteria the following conditions must be verified:

 $R_{2,Ed} \le R_{2,d}$ (for design loads) $R_{2,Ed} \le R_{2,allow.}$ (for allowable loads)

HALFEN Adjustable Cantilever

KON 41/V Calculation Example

Example:

From calculation model 2 the connector force $\mathsf{F}_{\mathsf{Z},\mathsf{Ed}}$ can be calculated

Connector force

$$\begin{split} &\sum M^{+} = q_{z,d} \cdot 0.17 \cdot 51.5 + F_{z,2,d} \cdot 30 + M_{y,2,d} + F_{z,1,d} \cdot 17,05 + M_{y,1,d} \\ &F_{Z,Ed} = \frac{1}{14.85} \cdot \sum M^{+} - F_{x,1,d} - F_{x,2,d} \\ &F_{z,Ed} = 7.45 \text{ kN} \end{split}$$

Design values for KON 41/V-FV

see table "Section properties"

$$M_{y,Rd} = \frac{M_{y,pl}}{\gamma_m} = \frac{92.73}{1.1} = 84.30 \text{ kN}$$

 $V_{z,Rd} = \frac{V_{z,pl}}{\gamma_m} = \frac{17.08}{1.1} = 15.52 \text{ kN}$

 $N_{Rd} = \frac{N_{pl}}{\gamma_m} = \frac{63.16}{1.1} = 57.42 \text{ kN}$

 $R_{2,d} = 16.8 \text{ kN}$

 $F_{z,d} = 15.0 \ kN$

Proof of cantilever profile HZM 41/41 left from support S2

$$\begin{split} \frac{V^{L}_{z,Ed}}{V_{z,Rd}} &= \frac{9.15}{15.52} = 0.59 \text{ kN } < 1.0 \\ V^{L}_{z,Ed} &> 0.5 \cdot V_{z,Rd} \implies \rho = \left(2 \cdot \frac{V^{L}_{z,Ed}}{V_{z,Rd}} - 1\right)^{2} = 0.0321 \\ \frac{M_{y,Ed}}{(1-\rho) \cdot M_{y,Rd}} &= \frac{70.59}{(1-0.321) \cdot 84.3} = 0.865 \text{ kN } < 1.0 \\ \frac{N^{L}_{Ed}}{(1-\rho) \cdot N_{Rd}} &= \frac{4.35}{(1-0.321) \cdot 57.42} = 0.078 \text{ kN } < 1.0 \\ \frac{M_{y,Ed}}{(1-\rho) \cdot M_{y,Rd}} &+ \frac{N^{L}_{,Ed}}{(1-\rho) \cdot N_{Rd}} = 0.943 \text{ kN } < 1.0 \end{split}$$

Proof of cantilever profile HZM 41/41 right from support S2

$$\frac{V_{z,Ed}^{R}}{V_{z,Rd}} = \frac{4.25}{15.52} = 0.27 \text{ kN} < 1.0$$

 $V_{z,Ed}^{R} < 0.5 \cdot V_{Z,Rd} \Rightarrow \rho = 0$

 $\frac{M_{y,Ed}}{M_{y,Rd}} = \frac{70.59}{84.3} = 0.837 \text{ kN} < 1.0$

 $\frac{N^{R}_{Ed}}{N_{Rd}} = \frac{0.42}{57.42} = 0.007 \text{ kN} < 1.0$

 $\frac{M_{y,Ed}}{(1-\rho)\cdot M_{y,Rd}} + \frac{N^{R}_{Ed}}{(1-\rho)\cdot N_{Rd}} = 0.844 \text{ kN} < 1.0$

All design criteria are fullfilled by the cantilever profile HZM 41/41

Proof of the HVT 41/V-VK-FV connector

see table "Connector forces"

$$\frac{R_{2,Ed}}{R_{2,d}} = \frac{13.4}{16.8} = 0.79 \text{ kN} < 1.0$$

$$\frac{F_{x,Ed}}{F_{x,d}} = \frac{7.45}{15.0} = 0.50 \text{ kN} < 1.0$$

All design criteria are fullfilled by the connector

Leviat

Please contact Leviat for more information on these products. Full contact details are available online at Leviat.com.

Imagine. Model. Make.

Leviat.com