

HALFEN HTA-CE CAST-IN CHANNELS

European Technical Assessment ETA-09/0339

HALFEN HTA-CE CAST-IN CHANNELS

General Note

Use of third-party products

This approval only applies to original HALFEN products. The specifications in this approval are not transferable to other products. Users are fully liable for personal injuries and material damage caused by third-party products used instead of HALFEN products.

Note: This translation of the original German version has not been verified by the Deutsches Institut für Bautechnik.

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-09/0339 of 28 June 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Halfen anchor channel HTA

Cast-in anchor channels

Halfen GmbH Abt. Forschung und Entwicklung Liebigstraße 14 40764 Langenfeld DEUTSCHLAND

Werk Langenfeld Liebigstraße 14 40764 Langenfeld

30 pages including 3 annexes which form an integral part of this assessment

EAD 330008-02-0601

European Technical Assessment ETA-09/0339

Page 2 of 30 | 28 June 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-09/0339

Page 3 of 30 | 28 June 2018

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Halfen anchor channel HTA is a system consisting of a C-shaped channel profile of steel and stainless steel and at least two metal anchors non-detachably fixed on the channel back and channel bolts.

The anchor channel is embedded surface-flush in the concrete. Halfen-channel bolts (hammerhead or hooked) with appropriate hexagon nuts and washers are fixed to the channel. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C1 to C3 and C6
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C4 to C6
Displacements (static and quasi-static loading)	See Annex C3 to C4
Characteristic resistance under fatigue cyclic loads (tension)	See Annex C9 to C11

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance		
Reaction to fire	Class A1		
Resistance to fire	See Annex C7 and C8		

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

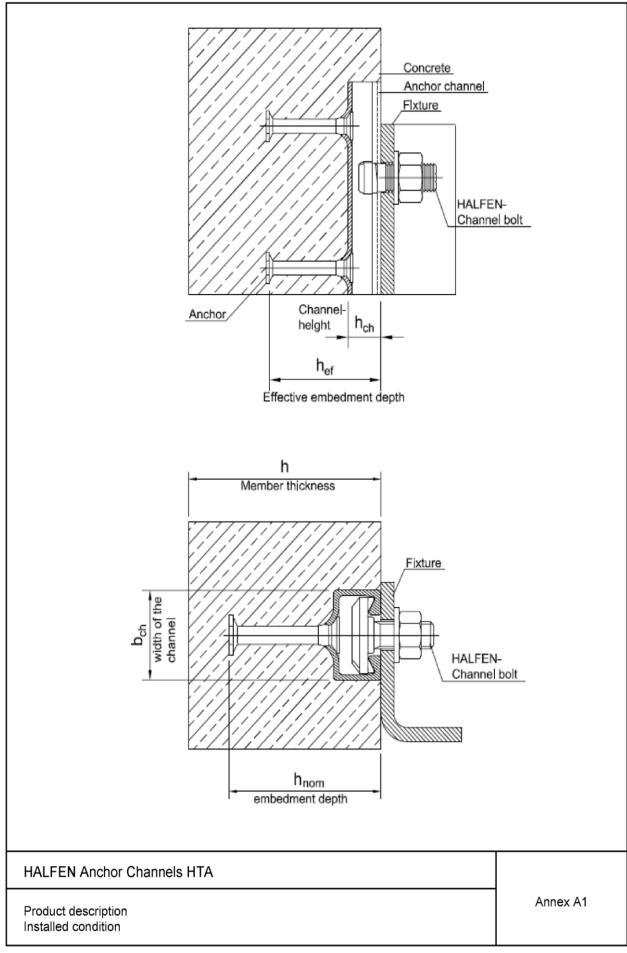
In accordance with EAD No. 330008-02-0601, the applicable European legal act is: I2000/273/EC1.

The system to be applied is: 1

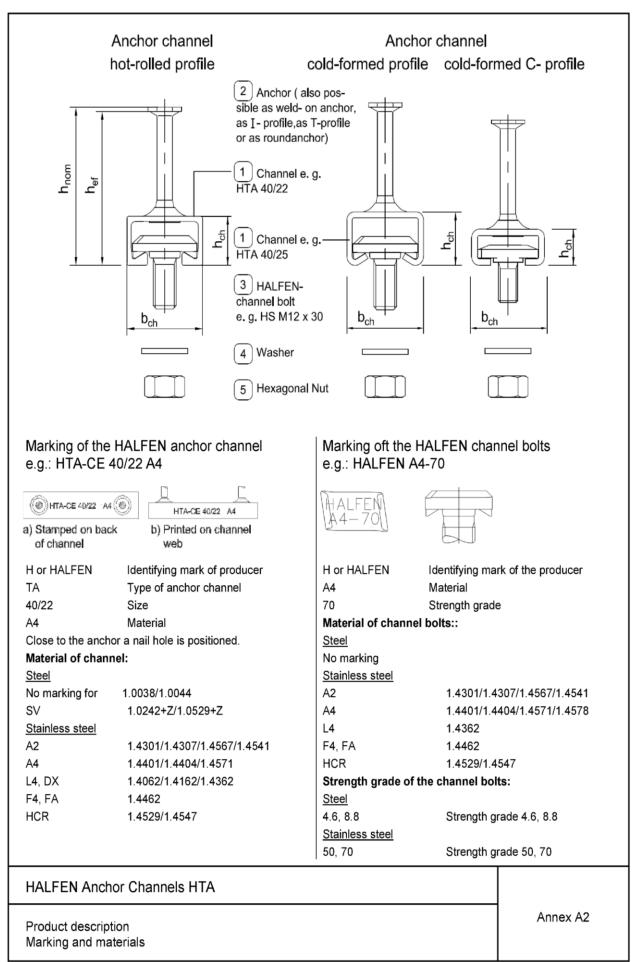
European Technical Assessment ETA-09/0339

Page 4 of 30 | 28 June 2018

English translation prepared by DIBt


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 28 June 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow beglaubigt:
Head of Department Müller

			Intend	led use	
		1	2	4	
		Dry internal conditions	Internal conditions with usual humidity	Medium corrosion exposure	High corrosion exposure
Item no.	Specification	Anchor channels may only be used in structures subject to dry internal conditions	Anchor channels may also be used in structures subject to internal conditions with usual humidity	Anchor channels may also be used in structures subject to external atmospheric exposure (incl. industrial and marine environment) or exposure in permanently damp internal conditions, if no particular aggressive conditions exist.	Anchor channels may also be used in structures subject to exposure inparticular aggressive conditions
	6	e.g. accomodations, bureaus, schools, hospitals, shops, exceptional internal conditions with usual humidity acc. column 2	e.g. kitchen, bath and laundry in residential buildings, exceptional permanent damp conditions and application under water	e.g. structures subject to external atmospheric exposure if no particular aggressive conditions exist acc. column 4	e.g. permanent, alternating immersion in seaw ater or the splash zone of seaw ater, chloride atmosphere of indoor sw imming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels w here deicing materials are used)
			Mate	erials	
1	Channel profile	Steel 1.0038 (A), 1.0044 (A), 1.0976 (D) hot-dip galv. ≥ 55 μm acc. to (N) 1.0242+Z (U), 1.0529+Z (U) hot-dip coated ≥ 15 μm	Steel 1.0038 (A), 1.0044 (A), 1.0976 (D) hot-dip galv. ≥ 55 µm acc. to (N) Stainless Steel 5) 1.4301 (G), 1.4307 (G), 1.4567 (G) 1.4541 (G), 1.0213 (B), 1.1122 (E)	Stainless Steel 1.4401 (G), 1.4404 (G), 1.4571 (G) 1.4362 (G), 1.4062 (F), 1.4162 (F)	Stainless Steel 1.4462 ² (G) , 1.4529 (G), 1.4547 (G)
② Anchor		Steel 1.0038 (A), 1.0214 (B), 1.0401 (C) 1.1132 (E), 1.5525 (I), 1.5535 (I) 1.5523 (H) hot-dip galv. ≥ 55 μm acc. to (N)	Steel 1.0038 (A), 1.0214 (B), 1.0401 (C) 1.1132 (E), 1.5525 (I), 1.5535 (I) 1.5523 (H) hot-dip galv.≥ 55 μm acc. to (N)	Stainless Steel 1.4401 (G) , 1.4404 (G) , 1.4571 (G) 1.4362 (G) , 1.4578 (G) Steel	Stainless Steel 1.4462 ²⁾ (G) , 1.4529 (G), 1.4547 (G)
			Stainless Steel 5) 1.4301 (G) , 1.4307 (G) , 1.4567 (G) , 1.4541 (G)	1.0038 (A) ⁴⁾	
3	HALFEN channel bolts	Steel strength grade 4.6 / 8.8 (J) electroplated ≥5 μm acc. to (O)	Steel strength grade 4.6 / 8.8 (J) hot-dip galv.≥50 µm acc. to {P} 1) Stainless Steel 5) strength grade 50,70 (K) 1.4301 (G) , 1.4307 (G), 1.4567 (G) , 1.4541 (G)	Stainless Steel strength grade 50,70 (K) 1.4401 (G) , 1.4404 (G) , 1.4571 (G) 1.4362 (G) , 1.4578 (G)	Stainless Steel strength grade 50,70 (K) 1.4462 ² (G), 1.4529 (G), 1.4547 (G)
4	Washer ³⁾ (R) and (S) production class A, 200 HV	Steel EN 10025:2005 electroplated ≥5 μm acc. to (O)	Steel EN 10025:2005 hot-dip galv.≥50 µm acc. to (P) 1) Stainless Steel 5) steel grade A2, A3 (K)	Stainless Steel steel grade A4, A5 (K)	Stainless Steel 1.4462 ²⁾ (G) , 1.4529 (G), 1.4547 (G)
⑤	Hexagonal nuts (T)	Steel strength grade 5/8 (L) electroplated ≥5 μm acc. to (O)	Steel strength grade 5/8 (L) hot-dip galv.≥50 µm acc. to {P} 1) Stainless steel 5) strength grade 70, 80 (M) steel grade A2, A3 (M)	Stainless Steel strength grade 70, 80 (M) steel grade A4, A5 (M)	Stainless Steel strength grade 70, 80 (M) 1.4462 ² (G), 1.4529 (G), 1.4547 (G)
B - C -	EN 10025-2:2004 EN 10263-2:2017 EN 10277-2:2008 EN 10149-2:2013	E - EN 10263-3:2017 F - EN 10088-2:2014 G - EN 10088-3:2014 H - EN 10269:2013	I - EN 10263-4:2017 J - EN ISO 898-1:2013 K - EN ISO 3506-1:2009 L - EN ISO 898-2:2012	M-EN ISO 3506-2:2009 N-EN ISO 1461:2009 O-EN ISO 4042:1999 P-EN ISO 10684:2004	R - EN ISO 7089:2000 S - EN ISO 7093-1:2000 T - EN ISO 4032:2012 U - EN 10346:2015
³⁾ 1.4	electroplated w ith 462 not applicable included in scop	a special coating $\geq 12~\mu m$ e for indoor sw imming pools e of delivery		icient concrete cover acc. to EN 1992 bination with stainless steel channel p	
ΗA	LFEN And	chor Channels HTA			

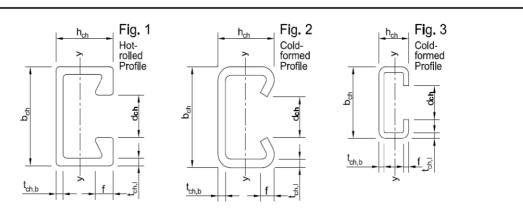


Table A2: Profile dimensions (steel and stainless steel)

	ø			Dimen	sions			<u>a</u>	
Anchor- channel	Figure	b _{ch}	h _{ch}	t _{ch,b}	t _{ch,l}	d _{ch}	f	Material	l _y
	ш			[m	m]			Ž	[mm ⁴]
28/15	3	28,00	15,25	2,25	2,25	12,00	2,25		4060
38/17	3	38,00	17,50	3,00	3,00	18,00	3,00		8547
40/25	2	40,00	25,00	2,75	2,75	18,00	5,60		20570
49/30	2	50,00	30,00	3,00	3,00	22,00	7,39		41827
54/33	2	54,00	33,00	4,50	4,50	22,00	7,90		72079
72/49	2	72,00	49,00	6,00	6,00	33,00	9,90	_	293579
40/22 40/22P	1	39,50	23,00	2,60	2,40	18,00	6,00	Steel	20029
50/30 50/30P	1	49,00	30,00	3,20	2,75	22,50	7,85		52896
52/34	1	52,50	33,50	4,10	4,00	22,50	10,50		93262
55/42	1	54,50	42,00	5,00	5,00	26,00	12,90		187464
72/48	1	72,00	48,50	4,50	5,00	33,00	15,50		349721
		Г							
28/15	3	28,00	15,25	2,25	2,25	12,00	2,25		4060
38/17	3	38,00	17,50	3,00	3,00	18,00	3,00		8547
40/25	2	39,50	25,00	2,50	2,50	18,00	5,40		19097
49/30	2	50,00	30,00	3,00	3,00	22,00	7,39		41827
54/33	2	54,00	33,00	4,50	4,50	22,00	7,90	<u> </u>	72079
72/49	2	72,00	49,00	6,00	6,00	33,00	9,90	ste	293579
40/22 40/22P	1	39,50	23,00	2,60	2,40	18,00	6,00	Stainless steel	20029
50/30 50/30P	1	49,00	30,00	3,20	2,75	22,50	7,85	<u> </u>	52896
52/34	1	52,50	33,50	4,10	4,00	22,50	10,50	1	93262
55/42	1	54,50	42,00	5,00	5,00	26,00	12,90		187464
72/48	1	72,00	48,50	4,50	5,00	33,00	15,50		349721

HALFEN Anchor Channels HTA	
Product description Profile dimensions	Annex A4

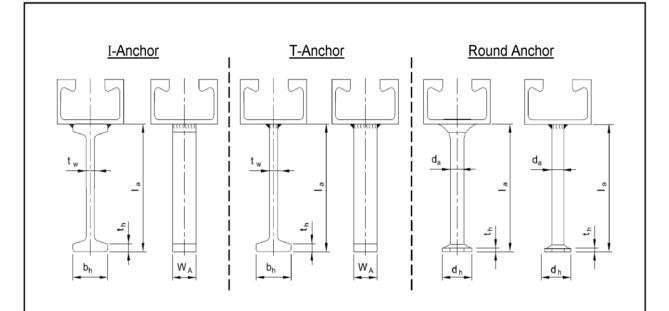


Table A3: Dimensions of anchors (I-Anchor, T-Anchor or Round Anchor)

Amahau		I-Anchor und T-Anchor				Round Anchor					
Anchor	min l _a	t _w	b _h	t _h	WA	A _h	min l _a	da	d _h	t _h	A _h
channel			[mm]			[mm ²]		[mı	m]		[mm ²]
28/15	62	5	18	3,3	10 - 20	130	32	6	12	1,3	85
38/17	62	5	18	3,3	10 - 20	130	60,4	8	16	1,9	151
40/25	62	5	18	3,3	12 - 24	156	60,9	8	16	1,9	151
40/22	62	5	18	3,3	12 - 24	156	60,9	8	16	1,9	151
40/22P	128	6	17	5	18 - 30	198	70,2	10	20	2,2	236
49/30	69	5	18	3,5	18 - 30	234	69,2	10	20	2,2	236
50/30	69	5	18	3,5	18 - 30	234	69,2	10	20	2,2	236
50/30P	128	6	17	5	25 - 35	275	78,7	12	25	2,7	378
54/33	128	6	17	5	30 - 40	330	126	12	25	2,7	378
52/34	128	6	17	5	30 - 40	330	125,5	12	25	2,7	378
55/42 ¹⁾	140	7,1	20	6	35 - 45	452	136,2	14	28	3,2	462
72/49	140	7,1	20	6	40 - 50	516	-				
72/48	140	7,1	20	6	40 - 50	516	-				

¹⁾ HTA 55/42 in stainless steel only with weld-on anchors.

HALFEN Anchor Channels HTA	
Product description Dimensions of anchors	Annex A5

Table A4: Anchor positioning

	Anchors	pacing s	End spa	cing x 1)	Min. Channel length I _{min}		
Anchor			Round	Welded	Round	Welded	
channel	s _{min}	s _{max}	anchor	anchor	anchor	anchor	
			Fig. 1	Fig. 2 and 3	Fig. 1	Fig. 2 and 3	
			[mm]			
28/15	50	200	25	25	100	100	
38/17	50	200	25	25	100	100	
40/25							
40/22		250	25 ²⁾	25 ²⁾	100	150	
40/22P	100 (50)						
49/30	100 (30)						
50/30							
50/30P							
52/34	100 (80)	250	35	25 ²⁾	150	150	
54/33	100 (80)	250	35	25	150	150	
55/42	100 (80)	300	35	25 (35)	150	150	
72/48	100 (80)	400		25 (25)		150	
72/49	100 (80)	400	-	25 (35)	-	150	

⁽⁾ valid for round anchor acc. Fig. 1.

²⁾ End spacing may be increased up to 35 mm.

HALFEN Anchor Channels HTA	
Product description Anchor positioning, channel length	Annex A6

¹⁾ For channels with I = 6070 mm the end spacing x is always 35 mm.

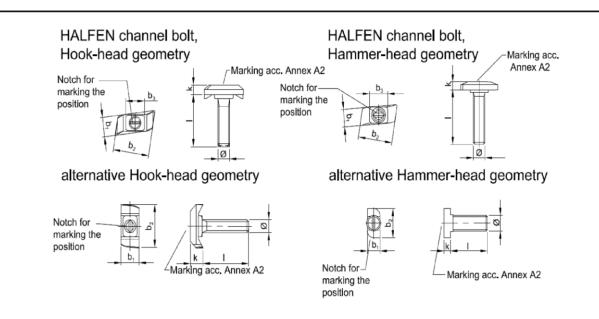


Table A5: Dimensions of HALFEN channel bolts

Head	HS	S Thread	Channe	Channel bolts - wing shape			Channel bolts - alternative shape			
Ĭ		Ø	Width	Length	Thickness	Width	Length	Thickness	channel	
			b₁ [mm]	b ₂ [mm]	k [mm]	b ₁ [mm]	b ₂ [mm]	k [mm]		
		M10	15	30.8	7.2	-	-	-	40/22	
	40/22	M12	15	30.8	7.2	-	-	-	40/22P 40/25	
		M16	17.4	30.8	8.2 (9.8)	-	-	-	40/20	
		M10	16.3	40.2	10	15	41.5	10	49/30 50/30	
ਰੂ		M12	16.3	40.2	10	15	41.5	10	50/30P	
Hook-head	50/30	M16	19.4	40.2	11	20	41.5	11	52/34 54/33	
ջ		M20	21	39.5	12.5	21	41.5	12	55/42	
_		M24	•	•	·	24.5	41	18	55/42	
	72/48	M20	-	-	-	23	58	14		
		M24	-	-	-	25	58	16	72/48	
		M27	-	-	-	28	58	18	72/49	
		M30	-	-	-	31	58	20		
		M6	10.6	21.1	4	10.1	22.7 (22.2)	4		
5	28/15	M8	10.6	21.1 (20.7)	4.5	10.1	22.7 (22.2)	4	28/15	
Hammer-head		M10	10.9	20.2	5	10.1	22.7 (22.2)	5 (4)		
mer		M12	10.8	20.1	6.5	10.1	22.7 (22.2)	5.5		
Ham		M10	13.6-14.1	29	6	13 (12)	30.5	6		
	38/17	M12	13.6-14.1	29	6	13 (12)	30.5	7 (6)	38/17	
		M16	16	29	8.5	16	30.5	7		

⁽⁾ Value applies for strength grade 8.8

ΗΔΙ	FFN	Anchor	Channels	ΔTH

Product description HALFEN channel bolts, dimensions

Annex A7

Table A6: Strength grade

	Ste	el ¹⁾	Stainless steel 1)		
Strength grade	4.6	8.8	50	70	
f _{uk} [N/mm²]	400	800	500	700	
f _{yk} [N/mm²]	240	240 640		450	
Finish	electroplated, hot-dip galv.			-	

¹⁾ Materials according Annex A2 and Annex A3, Tab. A1

HALFEN Anchor Channels HTA

Product description
HALFEN channel bolts, strength grade

Annex A8

Specifications for intended use

Anchor channels and channel bolts subject to:

- Static and quasi-static loads in tension and shear perpendicular to the longitudinal axis of the channel.
- Fatigue cyclic loads.
- Fire exposure for concrete class C20/25 to C50/60.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C12/15 to C90/105 according to EN 206-1:2000.
- Cracked or uncracked concrete.

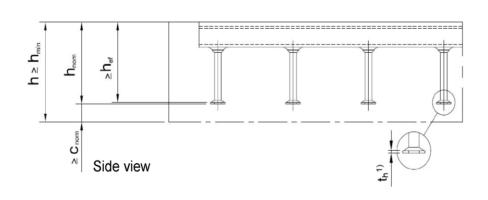
Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (e.g. accommodations, bureaus, schools, hospitals, shops, exceptional internal conditions with usual humidity)
 (anchor channels and channel bolts according to Annex A3, Table A1, column 1 - 4)
- Structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundry in residential buildings, exceptional permanent damp conditions and application under water) (anchor channels and channel bolts according to Annex A3, Table A1, column 2 - 4)
- Structures subject to external atmospheric exposure (incl. industrial and marine environment) or exposure to permanently damp internal conditions, if no particular aggressive conditions (e.g. permanent, alternating immersion in seawater etc.) exist.
 (anchor channels and channel bolts according to Annex A3. Table A1. column 3 - 4)
- Structures subject to exposure in particular aggressive conditions (e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used))
 (anchor channels and channel bolts according to Annex A3, Table A1, column 4)

Design:

- Anchor channels are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
 The position of the anchor channel and channel bolts are indicated on the design drawings (e.g. position of the anchor channel relative to the reinforcement or to supports).
- For static and quasi-static loading as well as fire exposure the anchor channels are designed in accordance with EOTA TR 047 "Design of Anchor Channels", March 2018 or Fpr EN 1992-4:2016.
- For fatigue loading the anchor channels are designed in accordance with EOTA TR 050 "Calculation Method for the Performance of Anchor Channels under Fatigue Loading", November 2015.
- The characteristic resistances are calculated with the minimum effective embedment depth.

HALFEN Anchor Channels HTA	
Intended use Specifications	Annex B1


Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex A5. Table A5 are generated including end spacing and minimum channel length and only to be used in dry internal conditions (Annex A3, Table A1, column 1). For anchor channels made of stainless steel there are no restrictions regarding corrosion resistance when using cut channel pieces, if cutting is done professionally and contamination of cutting edges with corroding material is avoided.
- Installation in accordance with the installation instruction given in Annexes B6 and B7.
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no movement of the anchor channels will occur during the time of laying the reinforcement and of placing and compacting the concrete.
- The concrete under the head of the anchors is properly compacted. The anchor channels are protected from penetration of concrete into the internal space of the channel profiles.
- Washer may be chosen according to Annex A3 and provided separately by the user.
- Orientating the channel bolt (groove mark according to Annex B7) rectangular to the channel axis.
- The required installation torque given in Annex B4 must be applied and must not be exceeded.

HALFEN Anchor Channels HTA	
Intended use	Annex B2
Specifications	

729729 18 8/14

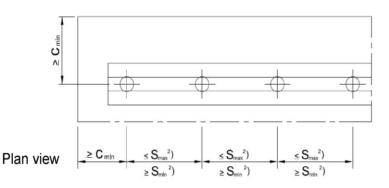


Table B1-1: Minim. anchorage depth, edge distance and member thickness

Anchor channel			28/15	38/17	40/25	49/30	54/33	72/49
Min. anchorage depth		h _{ef,min}	45	76	79	94	155	179
Min. edge distance		C _{min}	40	50	50	75	100	150
Tot. heigth round anchor	[mm]	h	47,3	77,9	85,9	99,2	159	-
Tot. heigth I- &T-anchor	Щ	n _{nom,min}	77,3	79,5	87	99	161	189
Min. momber thickness		h			actual h _{no}	m + C _{nom} 3)		
Min. member thickness		h _{min}	55	90	90	105	170	195

Table B1-2: Minim. anchorage depth, edge distance and member thickness

Anchor channel			40/22	40/22P	50/30	50/30P	52/34	55/42	72/48
Min. anchorage depth		h _{ef,min}	79	91	94	106	155	175	179
Min. edge distance		C _{min}	50	50	75	75	100	100	150
Tot. heigth round anchor	[mm]	h	83,9	93,2	99,2	108,7	159	178,2	-
Tot. heigth I- &T-anchor	Œ	n _{nom,min}	85	151	99	158	161,5	182	188,5
Min. momber thickness		h			actu	al h _{nom} + c	nom 3)		
Min. member thickness		h _{min}	90	105	105	120	170	190	195

HALFEN Anchor Channels HTA

Intended use

Installation parameters of anchor channels

Annex B3

 $^{^{1)}}$ t_{h} = Anchor head thickness $^{2)}$ $s_{min},\,s_{max}$ acc. Annex A6, Table A4 $^{3)}$ c_{nom} acc. EN 1992-1-1:2004 + AC:2010

Table B2: Minimum spacing and installation torque of HALFEN channel bolts

		Min		Instal	lation torque	T _{inst} 4)	
	IIAI EEN	Min.	General 2)		Steel - stee	el contact 3)	
Anchor channel	HALFEN Channel bolts Ø	spacing s _{min,cbo} of the channel bolts	Steel 4.6; 8.8 Stainless steel 50; 70 1)	Steel 4.6	Stainless steel 50 1)	Steel 8.8	Stainless Steel 70 ¹⁾
	[mm]	[mm]			[Nm]		
	6	30	3	3	3	-	-
20/45	8	40	8	8	8	20	15
28/15	10	50	13	15	15	40	30
	12	60	15	25	25	70	50
	10	50	15	15	15	40	30
38/17	12	60	25	25	25	70	50
	16	80	40	65	60	180	130
40/25	10	50	15	15	15	40	30
40/22	12	60	25	25	25	70	50
40/22P	16	80	45	65	60	180	130
40/00	10	50	15	15	15	40	30
49/30 50/30	12	60	25	25	25	70	50
50/30P	16	80	60	65	60	180	130
30/307	20	100	75	130	120	360	250
	10	50	15	15	15	40	30
52/34	12	60	25	25	25	70	50
54/33	16	80	60	65	60	180	130
	20	100	120	130	120	360	250
	10	50	15	15	15	40	30
	12	60	25	25	25	70	50
55/42	16	80	60	65	60	180	130
	20	100	120	130	120	360	250
	24	120	200	230	200	620	440
	20	100	120	130	120	360	250
72/48	24	120	200	230	200	620	440
72/49	27	135	300	340	300	900	650
	30	150	380	460	400	1200	850

¹⁾ Materials according to Annex A2 and Annex A3, Tab. A1

HALFEN Anchor Channels HTA	
Intended use Installation parameters	Annex B4

²⁾ Acc. to Annex B5, Fig.1

³⁾ Acc. to Annex B5, Fig. 2

⁴⁾ T_{inst} must not be exceeded

General

The fixture is in contact with the channel profile and the concrete surface.

The installation torque according to Annex B4, Table B2 shall be applied and must not be exceeded.

Steel to steel contact

The fixture is fastened to the anchor channel by suitable steel parts (e.g. washer). The installation torque according to Annex B4, Table B2 shall be applied and must not be exceeded.

Fig. 1

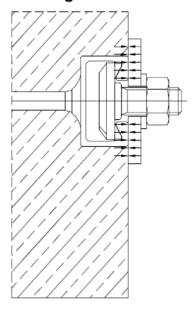
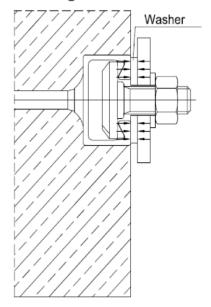
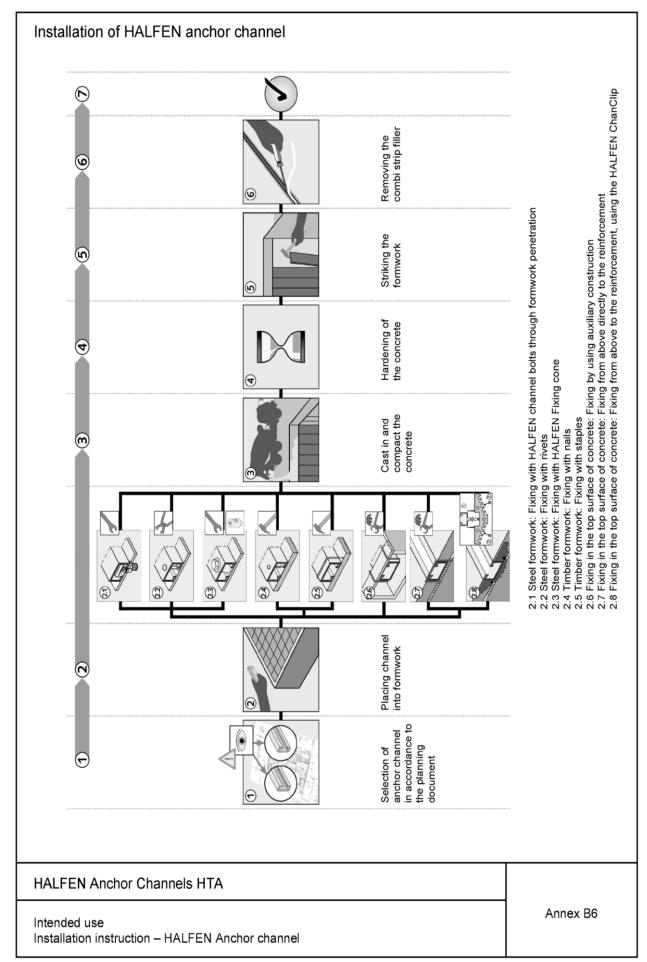
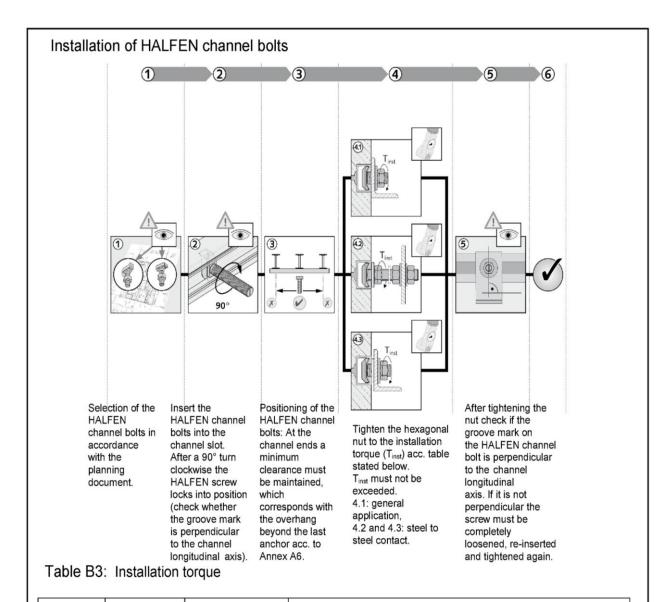



Fig. 2



HALFEN Anchor Channels HTA


Intended use Position of the fixture

Annex B5

Pos. of fixture acc.	Materi streng	th	Anchor channel						T _{inst} [N	m] ¹⁾		
Annex B5	grade	•		M6	M8	M10	M12	M16	M20	M24	M27	M30
			28/15	3	8	13	15	-	-	-	-	-
			38/17	-	-	15	25	40	-	-	-	-
	Steel 4.6	/ 8.8	40/22, 40/22P, 40/25	-	-	15	25	45	-	-		-
General	and Stainless	ctool	49/30, 50/30, 50/30P	-		15	25	60	75	-	-	-
	50 / 7		54/33, 53/34	-	-	15	25	60	120	-	-	-
		-	55/42	-	-	15	25	60	120	200	-	-
			72/49, 72/48	-	-	-		-	120	200	300	380
	Ctool	4.6		3	8	15	25	65	130	230	340	460
Steel to	Steel	8.8	All	-	20	40	70	180	360	620	900	1200
steel contact	Stainl.	50	All profiles	3	8	15	25	60	120	200	300	400

15

30

130

250

440

Steel

HALFEN Anchor Channels HTA

Intended use Installation instruction – HALFEN channel bolts

70

Annex B7

650

850

¹⁾ T_{inst} must not be exceeded

Table C1: Characteristic Resistances under tension load – steel failure anchor channel

Anchor cha	innel		28/15	38/17	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48
Steel failure, anchor	_										
Characteristic resistance	$N_{Rk,s,a}$	[kN]	9	18	20	31	31	54	56	80	102
Partial safety factor	Ϋ́Ms	1)					1,8				
Steel failure, connect	ion chan	nel/and	hor								
Characteristic resistance	$N_{Rk,s,c}$	[kN]	9	18	20	29	31	39	55	80	100
Partial safety factor	YMs,c	1) a					1,8				
Steel failure, local fle	xure of t	he char	nel lips	S							
Spacing of channel bolts for N _{Rk,s,I}	S _{I,N}	[mm]	56	76	80 79	79	100 98	98	107 105	109	144
Characteristic resistance	N ⁰ _{Rk,s,l}	[kN]	9	18	20 38	38	31 43	43	55 72	110	100 120
Partial safety factor	¥Ms.	1) I					1,8				

¹⁾ In absence of other national regulations

Table C2: Characteristic flexural resistance of channel

Anchor cha	nne	_		28/15	38/17	40/25	40/22	40/22P	49/30	50/30	50/30P	54/33	52/34	55/42	72/49	72/48
Characteristic flexure resistance of channel	MRk,s,flex	[Nm]	Steel / Stainless Steel	317	580	1071	1389	1389	1673	2803	2803	2984	3373	6447	8617	8593
Partial safety factor	Хм	ls,fle:	1) x							1,15						

¹⁾ In absence of other national regulations

HALFEN Anchor Channels HTA	
Performances Characteristic resistances under tension load – steel failure anchor channel	Annex C1

nnel bolts
N cha
IALFEN o
re of h
steel failu
Ι
on load
r tensio
nude:
resistances u
3: Char.
Table C

HALFEN Channel bolts ∅	bolts ∅			M6	M8	M10	M12	M16	M20	M24	M27	M30
Steel failure												
			4.6	8,0	14,6	23,2	33,7	62,8	98,0	141,2	183,6	224,4
Charakt.	2	1	8.8	16,1	29,3	46,4	67,4	125,6	196,0	282,4	367,2	448,8
resistance	ه ه		50 1)	10,1	18,3	29,0	42,2	78,5	122,5	176,5	229,5	280,5
			70 1)	14,1	25,6	40,6	59,0	109,9	171,5	247,1	321,3	392,7
			4.6					2,00				
Partial safety	(5)		8.8					1,50				
factor	. sw X		50 1)					2,86				
			70 1)					1,87				

¹⁾ Materials according Annex A2 and A3 ²⁾ In absence of other national regulations

HALFEN Anchor Channels HTA

Performances

Characteristic resistances under tension load – steel failure channel bolts

Annex C2

Table C4: Characteristic resistances under tension load – concrete failure

	hor channel			28/15	38/17	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48
Pull-out failure									1			
Characteristic resistance in	Round anchors	N _{Rk,p}	[kN]	7,6	13,6	13,6	21,2	21,2	34,0	34,0	41,6	-
cr. concrete C12/15	I-anchors	T ₹RK,p	ᆂ	11,7	11,7	14,0	17,8	21,0	24,7	29,7	40,6	46,4
Characteristic	Round			10,6	19,0	19,0	29,7	29,7	47,6	47,6	58,2	_
resistance in	anchors	N _{Rk,p}	[KN]	10,0	19,0	19,0	25,1	29,1	47,0	47,0	30,2	_
uncr. concrete C12/15	I-anchors	, vKK,p	ᆂ	16,4	16,4	19,6	24,9	29,4	34,6	41,6	56,8	65,0
	C20/25							1,67				
	C25/30							2,08				
	C30/37							2,50				
Increasing	C35/45							2,92				
factor for	C40/50	Ψ _c						3,33				
$N_{Rk,p}$	C45/55							3,75				
	C50/60							4,17				
	C55/67							4,58				
	≥C60/75							5,00				
Partial safety fa		γ _{Mp} =γ _N	1) lc					1,5				
Concrete cone	failure											
Product factor l	(1	k _{cr,N}		7,2	7,8	7,9	8,0	8,1	8,2	8,7	8,9	8,9
		k _{ucr,1}		10,3	11,2	11,2	11,5	11,5	11,7	12,4	12,6	12,7
Charact.edge s	pacing	C _{cr,N}	[mm]	111	171	176	195	199	216	260	269	270
Charact.spacing	g	S _{cr,N}						2,0 c _{cr,N}	I			
Partial safety fa		V Mc €	1)					1,5				
Splitting failur	е								1			
Charact.edge s	pacing	C _{cr,sp}	[mm]	135	228	237	273	282	318	465	525	537
Charact.spacing	g	S _{cr,sp}	트					2,0 c _{cr,s}	0			
Partial safety fa	ctor	УМsp	1)					1,5				

¹⁾ In absence of other national regulations

Table C5: Displacements under tension load

Anchor channel			28/15	38/17	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48
Tension load	N _{Ek}	[kN]	3,6	7,1	7,9	11,5	12,3	15,5	21,8	31,7	39,7
Short time displacement	δ_{N0}	[mm]	0,3	0,3	0,4	0,4	0,4	0,5	0,5	0,5	0,5
Long time displacement	δ _{N∞}	[mm]	0,6	0,6	0,8	0,8	0,8	1,0	1,0	1,0	1,0

HALFEN Anchor Channels HTA

Performances

Characteristic resistances under tension load – concrete failure and displacements

Annex C3

Anchor chann	nel			28/15	38/17	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48
Steel failure,	anchor											
Characteristic resistance		$V_{Rk,s,a}$	[kN]	9	18	20 35	35	31 52	59	55 78	110	100 146
Partial safety f	actor	Ϋ́мs	1)					1,8				
Steel failure,	connectio	n chanı	nel / an	chor								
Characteristic resistance		$V_{\text{Rk},\text{s},\text{c}}$	[kN]	9	18	20 35	35	31 52	59	55 78	110	100 146
Partial safety fa	actor	Y _{Ms.}	1) ca					1,8				
Steel failure, l	local flexu	re of ch	nannel	lips								
Spacing of cha bolts for V _{Rk,s,I}	annel	S _{I,V}	[mm]	56	76	80 79	79	100 98	98	107 105	109	144
Characteristic resistance		$V^0_{Rk,s,l}$	[kN]	9	18	20 35	35	31 52	59	55 78	110	100 146
Partial safety f	actor t	Ϋ́мs	1)					1,8				
Pry-out failure	e							· ·				
Product factor			k ₈ ²⁾	1,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0
Partial safety f	actor		(1) (Mc					1,5				
Concrete edg	e failure											
	racked oncrete		$k_{cr,V}$	4,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5
	ncracked oncrete		$k_{ucr,V}$	6,3	10,5	10,5	10,5	10,5	10,5	10,5	10,5	10,5
Partial safety f	1) (Mc					1,5						

¹⁾ In absence of other national regulations

Table C7: Displacements under shear load

Anchor channel			28/15	38/17	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48
Shear load	V _{Ek}	[kN]	3,6	7,1	7,9 13,9	13,9	12,3 20,6	23,4	21,8 31,0	43,7	39,7 57,9
Short time displacements	δ _{V0}	[mm]	0,6	0,6	0,6	0,6	0,6	0,6	1,2	1,2	1,2
Long time displacements	δ _{V∞}	[mm]	0,9	0,9	0,9	0,9	0,9	0,9	1,8	1,8	1,8

Performances
Character. resistances under shear load – steel failure anchor channel, concrete failure, displacements

Annex C4

 $^{^{2)}}$ Without supplementary reinforcement. In case of supplementary reinforcement the factor k_8 should be multiplied with 0,75.

M6 M8 M10 M12 M16		4.6 4,8 8,8 13,9 20,2 37,7	8.8 8,0 14,6 23,2 33,7 62,8	50 ¹⁾ 6,0 11,0 17,4 25,3 47,1	70 ¹⁾ 8,4 15,4 24,4 35,4 65,9	4.6 6,3 15,0 29,9 52,4 133,2	8.8 12,2 30,0 59,8 104,8 ³⁾ 266,4 ⁴⁾	50 1) 7,6 18,7 37,4 65,5 166,5	70 ¹⁾ 10,7 26,2 52,3 91,7 ³⁾ 233,1 ⁴⁾	4.6	8.8	50 ¹⁾	1,56	3 For HTA 28/15 $\rm M^0_{Rkg}$ is limited to 84 Nm. 4 For HTA 38/17 $\rm M^0_{Rkg}$ is limited to 231 Nm. 5 For HTA 49/30 $\rm M^0_{Rkg}$ is limited to 509 Nm.
HALFEN Channel bolts ∅	Stahlversagen			resistance VRK,s [KIN]			stic	resistance M Rk,s [NM]			Partial safety 2, 2)	factor		naterials according Annex A2 and A3 ln absence of other national regulations

Table C9: Characteristic resistances under combined tension and shear load

Anchor channe	I	28/15	38/17	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48
Steel failure: Lo	cal failure	by flexi	ure of cl	nannel li	ips and fa	ailure by	flexure	of chanr	nel	
Product factor	k ₁₃	2,0	2,0	2,0	2,0	2,0 1,0 1)	1,0 ¹⁾	2,0 1,0 1)	2,0	2,0 1,0 1)
Steel failure: Fa	ilure of an	chor an	d conne	ction be	etween a	nchor a	nd chann	el		
Product factor	k ₁₄	2,0	2,0	2,0 1,0 ²⁾	1,0 ²⁾	2,0 1,0 ²⁾	1,0 ²⁾	2,0 1,0 ²⁾	1,0 ²⁾	2,0 1,0 ²⁾

 $^{^{1)}}$ k_{13} can be taken as 2.0 if $V_{Rd,s,I}$ is limited to $N_{Rd,s,I}\,.$

HALFEN Anchor Channels HTA

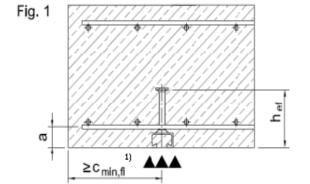
Performances
Characteristic resistances under combined tension and shear load

Annex C6

 $^{^{2)}}$ k_{14} can be taken as 2,0 if max (V_{Rd,s,a} ; V_{Rd,s,c}) are limited to the minimum of $N_{Rd,s,a}$ and $N_{Rd,s,c}$.

Table C10: Characteristic resistances under tension and shear load under fire exposure – steel failure

Anchor chan	nel				28/15	38/17	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/4 72/4
Steel failure:	Ancho	or, Con	nection	chan	nel / an	chor, L	ocal fle	exure of	channe	el lips, cl	nannel	bolts	
		M8			1,0	-	-	-	-	-	-	-	-
		M10			1,0	1,7	1,9	1,9	1,9	1,9	1,9	-	-
		M12			1,9	1,7	1,9 2,5	2,5	2,5	2,5	2,5	-	-
	R30	M16			-	3,2	3,6 6,0	6,0	4,0 6,0	6,0	6,0	6,3	6,3
		M20			-	-	-	-	4,0 9,5	9,5	8,9 10,1	10,3	10,
		M24			-	-	-	-	-	-	-	14,8	14,
		M8			0,8	-	-	-	-	-	-	-	-
		M10			0,8	1,5	1,5	1,5	1,5	1,5	1,5	-	-
		M12			1,3	1,5	1,5 2,5	2,5	2,5	2,5	2,5	-	-
R60 Characteristic	R60	M16			-	2,4	3,6 4,5	4,5	3,5 4,5	4,5	4,5	4,8	4,8
		M20			-	-	-	-	3,5 7,1	7,1	6,5 7,5	7,6	7,0
		M24	$N_{Rk,s,fi}$		-	-	-	-	-	-	-	11,1	11,
resistances	M8 M10		= [KN] V _{Rk,s,fi}	[kN]	0,6	-	-	-	-	-	-	-	-
		M10			0,6	1,0	1,1	1,1	1,1	1,1	1,1	-	-
		M12			0,7	1,0	1,1 1,6	1,6	1,6	1,6	1,6	-	-
	R90	M16			-	1,4	2,0 2,9	2,9	2,5 3,0	3,0	3,0	3,3	3,
		M20			-	-	-	-	2,5 4,8	4,8	4,2 4,8	4,9	4,9
		M24			-	-	-	-	-	-	-	7,3	7,
		M8			0,5	-	-	-	-	-	-	-	-
		M10			0,5	0,8	0,8	0,8	0,8	0,8	0,8	-	-
		M12			0,5	0,8	0,8 1,1	1,1	1,2	1,2	1,2	-	-
	R120	M16			-	1,0	1,2 1,6	1,6	2,1 2,3	2,3	2,3	2,6	2,0
		M20	_	-	-	-	-	2,1 3,6	3,6	3,0 3,5	3,6	3,6	
		M24			-	-	-	-	-	-	-	5,4	5,4
Partial saf	ety fac	tor	YMs,fi 1)	[-]		•	•	•	1,0		•		


¹⁾ In absence of other national regulations

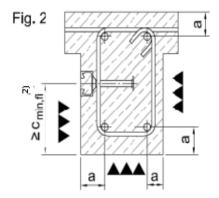

HALFEN Anchor Channels HTA	
Performances Characteristic resistances under tension and shear load under fire exposure	Annex C7

Table C11: Characteristic resistances under tension and shear load under fire exposure - concrete cone failure and min. axis distance of reinforcement

Anchor chan	nel			28/15	38/17	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48
Concrete cor	ne failure											
Char. edge sp	acina	C _{cr,N,fi}	[mm]				2	h _{ef} ≥ c _c	r,N			
Char. edge sp	acing	C _{min,fi}	[mm]	[mm] 2·h _{ef} 1); max(2·h _{ef} , 300 mm) 2)								
Char. spacing		S _{cr,N,fi}	[mm]	4·h _{ef} ≥ s _{cr,N}								
		S _{min,fi}				,	Acc. Tab	le A4, A	Annex A6	6		
Min. axis dist	ance of I	reinforce	ment 3)									
	R30	а		35	35	35	35	35	35	50	50	50
Min. axis	R60	а	[mm]	35	35	35	35	35	35	50	50	50
distance	R90	а	a [mm]		45	45	45	45	45	50	50	50
	R120 a				60	60	60	60	60	65	70	70

HALFEN Anchor Channels HTA	
Performances Characteristic resistances under tension and shear load under fire exposure	Annex C8

¹⁾ Fire exposure from one side only.
2) Fire exposure from more than one side.

³⁾ The reinforced concrete has to be designed acc. to EN 1992. The fire resistance class of the concrete member is not part of this ETA.

Table C12: Combinations of anchor channels and channel bolts under fatigue tension load

	Anchor c	hannel			Chai	nnel bolts	
Profile	Anchor	d₁ [mm]	Material	Channel bolt	Thread Ø [mm]	Grade	Material
					M12	8.8	
40/22	B6	8		HS 40/22	M16	4.6	
					IVITO	8.8	
					M12	8.8	
40/22P	B6	10		HS 40/22	M16	4.6	Steel
			Steel		IVITO	8.8	electroplated,
50/30	B6	10	hot-dip galv.	HS 50/30	M16	4.6	hot-dip galv.
30/30	ВО	10		110 30/30	M20	8.8	not dip gair.
50/30P	50/30P B6			HS 50/30	M16	4.6	
30/301				110 00/00	M20	8.8	
52/34	B6	P6 12		HS 50/30	M16	8.8	
52/54	_ B0	B6 12		110 30/30	M20	0.0	

Design Method I acc. EOTA TR 050, November 2015

Table C13: Characteristic resistances under fatigue tension load after n load cycles without static preload ($N_{Ed} = 0$) – Steel failure

Anchor channel		40/22	40/22P	50/30	E2/24
Anchor channel		40/22	40/22P	50/30P	52/34
	Load cycles		ΔN_{R}	k,s;0;n	
	n		[k	N]	
	≤ 10 ⁴	11,7	12,8	16,5	22,2
Characteristic	≤ 10 ⁵	6,7	7,7	9,8	13,2
resistances under fatigue tension load	≤ 10 ⁶	3,8	4,7	5,8	7,9
without static preload	≤ 2·10 ⁶	3,2	4,0	4,9	6,7
	≤ 5·10 ⁶	2,6			
	≤ 10 ⁸	1,2	3,3	4,0	5,5
	> 108	-			

HALFEN Anchor Channels HTA	
Performances Characteristic resistances under fatigue tension load – Design method I	Annex C9

Table C14: Characteristic resistances under fatigue tension load after n load cycles without static preload ($N_{Ed} = 0$) – Concrete failure

Pull-out failure and Concrete cone failure:

Reduction factor for pull-out and concrete cone failure without static preload ($N_{Ed} = 0$)

	Load cycles	$\eta_{c,fat}$
	n	[-]
	≤ 10 ⁴	0,736
Reduction factor for	≤ 10 ⁵	0,665
	≤ 10 ⁶	0,600
$\Delta N_{Rk,c;0;n} = \eta_{c,fat} N_{Rk,c}^{1}$	≤ 2·10 ⁶	0,582
$\Delta N_{Rk,p;0;n} = \eta_{c,fat} \cdot N_{Rk,p}^{2}$	≤ 5·10 ⁶	0,559
	≤ 6·10 ⁷	0.500
	> 6·10 ⁷	0,500

¹⁾ N_{Rk,c} static resistance according to Annex C3 and EOTA TR 047, March 2018 or Fpr EN 1992-4:2016

N_{Rk,p} static resistance according to Annex C3

HALFEN Anchor Channels HTA	
Performances Characteristic resistances under fatigue tension load – Design method I	Annex C10

Design method II acc. EOTA TR 050, November 2015

Table C15: Characteristic limit resistances under fatigue tension load (n $\rightarrow \infty$) Steel failure

Anchor channel	40/22P	50/30	52/34
Anchor channel		50/30P	
Characteristic resistances under fatigue tension load	Δ N _{Rk,s;0;∞}		
	[kN]		
	3,3	4,0	5,5

Table C16: Characteristic limit resistances under fatigue tension load (n $\rightarrow \infty$) Concrete cone and pull-out failure

Anchor Channel	40/22P	50/30	52/34
7 HIGHER CHARMEN		50/30P	
Characteristic resistances under fatigue tension load		η _{c,fat} [-] 0,5	
$\Delta N_{Rk,c;0;\infty} = \eta_{c,fat} \cdot N_{Rk,c}^{1)}$ $\Delta N_{Rk,p;0;\infty} = \eta_{c,fat} \cdot N_{Rk,p}^{2)}$			

¹⁾ N_{Rk,c} static resistance according Annex C3 and EOTA TR 047, March 2018 or Fpr EN 1992-4:2016

In absence of other national regulations the following safety factors $\gamma_{M,fat}$ are recommended for design method I and II (Tables C12 to C15) according to EOTA TR 050, November 2015.

$$\gamma_{Ms,fat} = 1,35 \text{ (steel)}$$

 $\gamma_{Mc,fat} = \gamma_{Mp,fat} = 1,5 \text{ (concrete)}$

HALFEN Anchor Channels HTA

Annex C11

Performances Characteristic

Characteristic resistances under fatigue tension load – Design method II

²⁾ N_{Rk,p} static resistance according Annex C3

For more information on the products featured here, please contact Leviat:

Australia Leviat

98 Kurrajong Avenue, Mount Druitt Sydney, NSW 2770

Tel: +61 - 2 8808 3100 Email: info.au@leviat.com

Austria Leviat

Leonard-Bernstein-Str. 10 Saturn Tower, 1220 Wien Tel: +43 - 1 - 259 6770 Email: info.at@leviat.com

Belgium Leviat

Borkelstraat 131 2900 Schoten

Tel: +32 - 3 - 658 07 20 Email: info.be@leviat.com

China Leviat

Room 601 Tower D, Vantone Centre

No. A6 Chao Yang Men Wai Street

Chaoyang District

Beijing · P.R. China 100020 Tel: +86 - 10 5907 3200 Email: info.cn@leviat.com

Czech Republic

Leviat

Business Center Šafránkova Šafránkova 1238/1 155 00 Praha 5

Tel: +420 - 311 - 690 060 Email: info.cz@leviat.com

France Leviat

18, rue Goubet 75019 Paris

Tel: +33 - 1 - 44 52 31 00 Email: info.fr@leviat.com Germany Leviat

Liebigstrasse 14 40764 Langenfeld Tel: +49 - 2173 - 970 - 0 Email: info.de@leviat.com

Italy Leviat

Via F.Ili Bronzetti N° 28 24124 Bergamo Tel: +39 - 035 - 0760711

Tel: +39 - 035 - 0760711 Email: info.it@leviat.com

Malaysia Leviat

28 Jalan Anggerik Mokara 31/59

Kota Kemuning,

40460 Shah Alam Selangor Tel: +603 - 5122 4182 Email: info.my@leviat.com

Netherlands Leviat Oostermaat 3

7623 CS Borne Tel: +31 - 74 - 267 14 49 Email: info.nl@leviat.com

New Zealand

2/19 Nuttall Drive, Hillsborough, Christchurch 8022

Tel: +64 - 3 376 5205 Email: info.nz@leviat.com

Norway Leviat

Vestre Svanholmen 5 4313 Sandnes Tel: +47 - 51 82 34 00 Email: info.no@leviat.com

Poland Leviat

UI. Obornicka 287 60-691 Poznan Tel: +48 - 61 - 622 14 14 Email: info.pl@leviat.com Singapore Leviat

14 Benoi Crescent Singapore 629977 Tel: +65 - 6266 6802 Email: info.sg@leviat.com

Spain Leviat

Polígono Industrial Santa Ana c/ Ignacio Zuloaga, 20 28522 Rivas-Vaciamadrid Tel: +34 - 91 632 18 40 Email: info.es@leviat.com

Sweden Leviat

Vädursgatan 5 412 50 Göteborg Tel: +46 - 31 - 98 58 00 Email: info.se@leviat.com

Switzerland Leviat Hertistrasse 25

8304 Wallisellen Tel: +41 - 44 - 849 78 78 Email: info.ch@leviat.com

United Kingdom

Leviat

A1/A2 Portland Close Houghton Regis LU5 5AW Tel: +44 - 1582 - 470 300 E-Mail: info.uk@leviat.com

United States of America

Leviat

6467 S Falkenburg Rd. Riverview, FL 33578 Tel: (800) 423-9140 Email: info.us@leviat.us

For countries not listed Email: info@leviat.com

Leviat.com Halfen.com

For information on certified management systems and standards, see www.halfen.com

Notes regarding this catalogue