We are one team. We are Leviat.

Leviat is the new name of CRH’s construction accessories companies worldwide.

Under the Leviat brand, we are uniting the expertise, skills and resources of Ancon and its sister companies to create a world leader in fixing, connecting and anchoring technology.

The products you know and trust will remain an integral part of Leviat’s comprehensive brand and product portfolio. As Leviat, we can offer you an extended range of specialist products and services, greater technical expertise, a larger and more agile supply chain and better, faster innovation.

By bringing together CRH’s construction accessories family as one global organisation, we are better equipped to meet the needs of our customers, and the demands of construction projects, of any scale, anywhere in the world.

This is an exciting change. Join us on our journey.

Read more about Leviat at Leviat.com
Our product brands include:

- Ancon®
- Connolly
- HALFEN
- HELIFIX
- ISEDIO
- PLAKA

- 60 locations
- sales in 30+ countries
- 3000 people worldwide

Leviat.com
Masonry Reinforcement and Windposts

Strengthening Masonry Panels

Large panels of masonry or panels with openings can be difficult to design. The traditional solutions have been to increase the thickness of the wall, introduce a masonry pier or use concrete filled hollow blocks.

Ancon AMR Bed Joint Reinforcement and Ancon Windposts are designed to provide additional lateral support for panels of masonry.

Ancon AMR is a fabricated and flattened stainless steel reinforcement which locates in the bed joint to strengthen a wall.

Windposts can be installed into either the inner leaf of blockwork or into the cavity leaving the blockwork undisturbed.

Parapet Posts are used as vertical support for brickwork in parapet panels.

Contents

<table>
<thead>
<tr>
<th>AMR Masonry Reinforcement</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMR-X Masonry Reinforcement</td>
<td>7</td>
</tr>
<tr>
<td>Reinforcing Stack-Bonded Masonry</td>
<td>8</td>
</tr>
<tr>
<td>Windposts</td>
<td>9</td>
</tr>
<tr>
<td>Parapet Posts</td>
<td>9</td>
</tr>
</tbody>
</table>

Windpost Types	10
Windpost Ties	10
Fixings & Connections	11
Properties & Recommended Loads	12-13
Reduce risk of cracking
Minimise wall thickness
Improve structural performance

BIM Objects available
Product information in NatSpec
ISO 9001

Improve structural performance
Minimise wall thickness
Reduce risk of cracking
Bed Joint Reinforcement
Bed joint reinforcement is used to improve the structural performance of masonry walls by providing additional resistance to lateral loads, e.g., wind. It can also be used to reduce the risk of cracking either at stress concentrations around openings or as a result of movement, including the control of shrinkage. A structural engineer should be consulted to assess the spacing of control joints and bed joint reinforcement.

Bed joint reinforcement may be used in both main and secondary reinforcement applications for a variety of purposes and locations, as set out in the table below.

<table>
<thead>
<tr>
<th>Purpose / Location</th>
<th>Ladder Type Reinforcement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase panel sizes</td>
<td>✔</td>
</tr>
<tr>
<td>Increase movement joint spacing</td>
<td>✔</td>
</tr>
<tr>
<td>Feature courses, corbels, plinths</td>
<td>✔</td>
</tr>
<tr>
<td>Corner and T junctions</td>
<td>✔</td>
</tr>
<tr>
<td>Stack-bonded panels</td>
<td>✔</td>
</tr>
<tr>
<td>Differential movement control</td>
<td>✔</td>
</tr>
<tr>
<td>Above and below openings</td>
<td>✔</td>
</tr>
</tbody>
</table>

In walls which have door and window openings, bed joint reinforcement can reduce the frequency of control joints. Reinforcement should be provided in the first and second courses above and below all openings and should extend no less than 600mm either side of the opening.

Bed joint reinforcement can also be used near the top of the structural walls abutting concrete roofs and to provide additional strength to parapet walls.

Ancon AMR ‘Ladder Type’ Masonry Reinforcement
Available in various standard configurations, Ancon AMR and AMR-X suit a wide range of structural load conditions and wall widths. The longitudinal wires have a minimum characteristic yield strength of 500 MPa.

The range of Ancon masonry reinforcement is tested and manufactured to EN 845-3 to ensure the highest quality and complies with AS 3700. Wires are flattened to 3mm ensuring the longitudinal bars have space in the joint to be surrounded by mortar.

Durability
Material selection will be determined by the location of the building. Grade 304 can be used in all but the most aggressive applications and Grade 316 should be used in severe marine, industrial and below DPC with aggressive soil.

Durability Exposure Map

Materials
Available in both grade 304 and 316 stainless steel, Ancon masonry reinforcement provides the greatest corrosion resistance and life-cycle costing benefits.

Wire Diameters
Manufactured from three wire sizes which, after flattening, have an equivalent wire diameter of 3.0, 4.0, and 5.0mm, the range suits the majority of load conditions. AMR-X is available from stock in 4mm wire diameter with the other sizes available to order.

Depth
The main longitudinal wires are flattened to less than 3mm. These wires are joined by cross wires welded in the same plane at 450mm centres. This profile ensures good mortar cover is maintained, even when the product is lapped or used with wall ties.

Length
Manufactured in standard lengths of 2700mm.

Widths
Standard AMR is available in three widths (60, 100, and 150mm), and can be used in wall widths from 90mm to 190mm. Care must be taken in selecting the correct width of reinforcement which should be 30mm - 50mm less than the width of the masonry unit. AMR-X is stocked in a standard 60mm width for use in 90mm and 110mm masonry units. Other widths are available to order.

<table>
<thead>
<tr>
<th>AMR Size</th>
<th>Cross Section Area mm² Per Wire</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>3mm AMR</td>
<td>7.07</td>
<td>14.14</td>
</tr>
<tr>
<td>4mm AMR</td>
<td>12.57</td>
<td>25.14</td>
</tr>
<tr>
<td>5mm AMR</td>
<td>19.63</td>
<td>39.26</td>
</tr>
</tbody>
</table>
Ancon AMR-X, Enhanced Masonry Reinforcement

When compared to other ladder-type reinforcement, Ancon AMR-X can accelerate the speed of construction, improve build quality and reduce the requirement for site supervision.

To provide additional resistance to lateral loads and improve the structural performance of a masonry wall, it is important that the reinforcement is surrounded by mortar.

The designed performance of a wall panel may not be achieved if the bed joint reinforcement is simply laid directly onto dry masonry with a mortar layer applied above. Unfortunately, research has shown that this is common site practice, which led us to develop the new AMR-X reinforcement.

The product is based on standard Ancon AMR masonry reinforcement, but with shaped rather than straight cross wires. This innovative design is a simple, cost-effective way to correct poor site practice.

If applied to dry bricks or blocks, only the cross wires are in contact with the masonry; the longitudinal wires are elevated. When the next masonry unit is lowered, the mortar layer disperses around the steel, leaving the reinforcement fully surrounded.

The cross wires have been designed so the AMR-X can be installed either way up. AMR-X is available in various configurations, suitable for brickwork or blockwork, internal or external walls and the majority of load applications.

BIM Objects

BIM objects for AMR-X masonry reinforcement are available to download from www.ancon.com.au/downloads/bim-object-library

Specification / Identification

AMR is specified using the simple reference structure shown below. Each length of AMR is marked with a product reference to aid identification on site.

Material Reference

Width (mm)

AMR/S304/D3/W60

Product Code

Wire (mm)

Equivalent wire diameter after flattening

AMR and AMR-X Typical Applications

<table>
<thead>
<tr>
<th>Masonry Width</th>
<th>Wire Dia.</th>
<th>Material Grade</th>
<th>Cross Wire</th>
<th>Product Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>90/110</td>
<td>3</td>
<td>304</td>
<td>AMR</td>
<td>AMR/S304/D3/W60</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>316</td>
<td>AMR</td>
<td>AMR/S316/D3/W60</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>304</td>
<td>AMR</td>
<td>AMR/S304/D4/W60</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>316</td>
<td>AMR-X</td>
<td>AMR/S316/D4/W60</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>304</td>
<td>AMR</td>
<td>AMR/S304/D5/W100</td>
</tr>
<tr>
<td>140/150</td>
<td>4</td>
<td>304</td>
<td>AMR</td>
<td>AMR/S304/D4/W100</td>
</tr>
<tr>
<td>190/200</td>
<td>4</td>
<td>304</td>
<td>AMR</td>
<td>AMR/S304/D5/W150</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>304</td>
<td>AMR</td>
<td>AMR/S304/D5/W150</td>
</tr>
</tbody>
</table>

Note: Other sizes available to order

Corners

Corners are formed on site by cutting the inner wire and bending the outer wire.

Laps and Positioning

Laps should be a minimum of 225mm in length and must include at least one cross wire. The lap can be achieved by either stacking the product or positioning lengths side by side. The position of laps should be staggered throughout the masonry panel.

Positioned side by side

Stacked

Overall thickness when lapped is max. 6mm

‘Using Ancon AMR-X will ensure bed joint reinforcement is accurately installed without compromising on build time’.

Structural Engineer

‘I have recommended that we use this product as it can eliminate the risk of inadequate mortar bond around bed joint reinforcement’.

Site Manager
Reinforcing Stack-Bonded Masonry

Stack bonding has a distinctive uniform bond pattern and is often detailed for its aesthetic appearance without consideration for its design limitations.

Where masonry units are stacked one above the other, the lack of bonding between them will greatly reduce the overall flexural strength of the panel and the ability of the wall to spread vertical loads. In stack bonded masonry, concentrated loads will be carried down to the support by the particular vertical ‘column’ of masonry under load, with little distribution to adjacent masonry. Ancon AMR Masonry Reinforcement, located in the bed joints, will increase the panel’s flexural strength and improve the capacity to resist lateral loads and spread vertical loads.

AS 3700:2018 defines stack bonded masonry as masonry in which the overlap of masonry units in successive courses is less than ¼ of the unit length or 50mm, whichever is greater. Clause 4.12 sets out the minimum requirements for bed joint reinforcement in a stack bonded wall:

Extract from AS 3700:2018 Clause 4.12

Bed joint reinforcement shall be spaced vertically at centres not exceeding six times the thickness of the stack bonded leaf and shall have an area not less than 0.00035 the gross vertical cross sectional area of the wall.

Bed joint reinforcement shall also be placed in the first joint above and below unrestrained edges and within 300mm of a horizontal line of lateral support. See adjacent illustration.

Examples

For 110x76 brick unit walls over 1.5m high 4mm diameter bed joint reinforcement should be placed in the third bed joint from the top and bottom of the wall panel and then in every fifth joint.

For 150x200 block unit walls over 1.5m high 4mm diameter bed joint reinforcement should be placed in the first bed joint from the top and bottom of the wall panel and then in every second joint.

Our technical team can advise on spacing for other masonry unit and wall heights. Contact us on 1300 304 320 or email info.ancon.au@leviat.com

Please note that these are minimum requirements to stabilise the stack bonded masonry. The project structural engineer may specify more than this to add additional strength to the wall panel.
Windposts and Parapet Posts
Ancon Windposts are designed to suit your specific construction and load conditions. They are suitable for use where standard AMR ladder type masonry reinforcement is inadequate or when there is a requirement to split a large masonry panel.

BIM Objects
BIM objects are available to download from www.ancon.com.au.

Windpost Design
Ancon Windposts are designed to span vertically between floors to provide lateral support for panels of brickwork. The windposts will usually be restrained by the brickwork and designed as ‘simply supported beams’.

Connections to the frame are designed to permit adjustment during installation. Serrated surfaces will be provided where adjustment is in the direction of the load. The top connection allows for shrinkage or vertical movement of the frame to take place. The type of fixing will depend on the nature of the frame. Expansion bolts are normally supplied for concrete frames and set screws will be supplied for steel frames. The tables on page 12 include part of the range of Ancon windposts. For further information or advice on specific applications, please contact our Technical Services Team.

Please note, it is the responsibility of the Engineer to design a suitable structure for connecting a windpost or parapet post.

Where windposts are to be connected to a concrete frame, the project Structural Engineer should advise the concrete grade and whether the windpost connections should be designed for cracked or un-cracked concrete. In the absence of this information, we will provide designs based on N32 cracked concrete.

Parapet Posts
Ancon Parapet Posts provide lateral restraint to masonry that projects above the main structure. They are designed as ‘cantilevers’ and include a substantial base connection to transfer the bending moment to the structure. To ensure a practical base connection the posts are usually less than 1.6 metres in height. The tables on page 13 show part of the range of Ancon parapet posts. For further information or advice on specific applications, please contact our Technical Services Team.

Details for Specification and Ordering
Ancon Windposts are designed to EN 1993.

The following clause can be adapted for your bill of quantities to aid the specification of Ancon Windposts and Parapet Posts.

Ancon Windposts WP3 65 x 60 x 4 in grade 304 stainless steel, overall length 2750mm complete with all ties and end connections.
Masonry Reinforcement and Windposts

Ancon WP2 Windposts
Ancon WP2 Windposts are angle section windposts designed for either small cavities or where wind loads are high. One leg of the angle windpost is built into the blockwork, and the blockwork tied through the leg of the windpost to minimise any possible movement or cracking of internal finishes. The design of Ancon WP2 Windposts assumes full restraint to the longer leg of the post located within the vertical masonry joint. To prevent lateral movement of the post within this joint and ensure the windpost performs to its full capacity, it is essential that this joint is tightly packed with mortar. If a vertical movement joint is required in place of a tied joint, ties with a debonded end on one side can be supplied. The capacity of the post will be reduced in this configuration.

WP2 Windpost with SNS and SPN Wall Ties

Ancon WP3 Windposts
Ancon WP3 Windposts are channel section windposts which are designed to be installed within the cavity leaving the blockwork undisturbed. The windposts are complete with end connections and ties which fit into the vertical slots in the flanges of the channel section.

WP3 Windpost with SDN and SPN Ties in Cavity Wall

WP3 Windposts with SDN and SPN Ties Providing Support for Brick Pier

Ancon WP4 Windposts
Ancon WP4 Windposts are generally used in internal blockwork walls that have a “fair faced” finish to both sides and where the windposts cannot protrude beyond either face. Sometimes referred to as “spine” posts they are flat plates designed to fit within the wall. Although the depth of a WP4 post is limited by the width of the masonry (ideally 20mm less than the wall width), the thickness of the post can vary to increase its load capacity. Blockwork is tied through the post.

WP4 Windpost with SNS Tie in Single Skin Blockwork

Windpost Ties
A range of ties is available to suit Ancon Windposts. SDN Ties are used to the outer leaf and SPN Ties to the inner leaf. SNS Ties are used across the posts in the inner blockwork and can be supplied with a debonding sleeve for use where there is a vertical movement joint.

SPN
SDN
SNS

WP3 Fixed to Concrete at the Base and a Steel Beam at the Top

Ancon WP2 Windposts with SDN and SNS Ties in Cavity Wall

WP2 Windpost at Vertical Movement Joint in the Inner Leaf of Blockwork with Debonded Ties Across the Post
Note that the capacity of the windpost will be reduced in this configuration.

WP3 Windpost with SDN and SPN Ties in Cavity Wall

Tel: 1300 304 320 www.ancon.com.au
Fixings for Windposts and Parapet Posts

Connections to the frame can be made in a variety of ways and will depend on the type of post, structure and fixing being used. Typical examples of connections are shown below.

Connections

The choice of fixing and its position is dependent on the type and length of the windpost and the structure to which it is being fixed. Levit designs fixing details for the top and base of each windpost and a drawing is issued for approval prior to manufacture.

The bolt in the slotted connection at the top of the windpost is positioned so that vertical movement of the frame can take place.
Masonry Reinforcement and Windposts

Properties and Recommended Loads for Windposts to EN 1993

Ancon Windposts are designed as ‘simply supported beams’ with a maximum deflection of span/360. The tables below include examples of our range of Windposts with maximum design loads to EN 1993. The design resistances shown should be compared to factored loads.

Performance of WP2 Windposts to EN 1993

<table>
<thead>
<tr>
<th>Size a x b x t</th>
<th>2.5m</th>
<th>Design Resistance (kN) per Post (uniformly distributed) for Various Windpost Spans</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.0m</td>
<td>3.5m</td>
</tr>
<tr>
<td>125x70x4</td>
<td>9.46</td>
<td>7.07</td>
</tr>
<tr>
<td>140x70x4</td>
<td>12.28</td>
<td>9.25</td>
</tr>
<tr>
<td>150x70x4</td>
<td>14.21</td>
<td>10.86</td>
</tr>
<tr>
<td>160x70x4</td>
<td>15.81</td>
<td>11.90</td>
</tr>
<tr>
<td>175x70x4</td>
<td>17.92</td>
<td>14.46</td>
</tr>
<tr>
<td>160x70x5</td>
<td>20.26</td>
<td>15.94</td>
</tr>
<tr>
<td>150x70x6</td>
<td>20.26</td>
<td>16.64</td>
</tr>
<tr>
<td>170x70x6</td>
<td>20.26</td>
<td>18.29</td>
</tr>
<tr>
<td>180x70x6</td>
<td>20.26</td>
<td>20.80</td>
</tr>
<tr>
<td>150x80x6</td>
<td>20.26</td>
<td>22.39</td>
</tr>
<tr>
<td>185x80x6</td>
<td>20.26</td>
<td>24.76</td>
</tr>
<tr>
<td>170x80x8</td>
<td>20.26</td>
<td>24.76</td>
</tr>
<tr>
<td>180x80x8</td>
<td>20.26</td>
<td>24.76</td>
</tr>
</tbody>
</table>

Note: Table based on tie spacing of 258mm, ties on each leg, no vertical movement joint and long leg restrained by the masonry. Figures in **bold** indicate capacity limited by tie capacity.

Performance of WP3 Windposts to EN 1993

<table>
<thead>
<tr>
<th>Size a x b x t</th>
<th>2.5m</th>
<th>Design Resistance (kN) per Post (uniformly distributed) for Various Windpost Spans</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.0m</td>
<td>3.5m</td>
</tr>
<tr>
<td>55x60x4</td>
<td>3.19</td>
<td>2.22</td>
</tr>
<tr>
<td>55x60x5</td>
<td>3.93</td>
<td>2.73</td>
</tr>
<tr>
<td>65x60x4</td>
<td>4.68</td>
<td>3.26</td>
</tr>
<tr>
<td>65x60x5</td>
<td>5.80</td>
<td>4.03</td>
</tr>
<tr>
<td>75x60x4</td>
<td>6.49</td>
<td>4.53</td>
</tr>
<tr>
<td>75x60x5</td>
<td>8.05</td>
<td>5.83</td>
</tr>
<tr>
<td>85x60x4</td>
<td>8.63</td>
<td>6.03</td>
</tr>
<tr>
<td>85x60x5</td>
<td>10.75</td>
<td>7.51</td>
</tr>
<tr>
<td>95x60x5</td>
<td>13.29</td>
<td>9.72</td>
</tr>
<tr>
<td>105x60x5</td>
<td>13.29</td>
<td>12.22</td>
</tr>
<tr>
<td>115x60x5</td>
<td>13.29</td>
<td>15.03</td>
</tr>
<tr>
<td>115x80x6</td>
<td>13.29</td>
<td>16.24</td>
</tr>
<tr>
<td>115x80x8</td>
<td>13.29</td>
<td>16.24</td>
</tr>
</tbody>
</table>

Note: Table based on tie spacing of 258mm. Figures in **bold** indicate capacity limited by tie capacity.

Properties and Performance of WP4 Windposts to EN 1993

<table>
<thead>
<tr>
<th>Size a x t</th>
<th>2.5m</th>
<th>Design Resistance (kN) per Post (uniformly distributed) for Various Windpost Spans</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.0m</td>
<td>3.5m</td>
</tr>
<tr>
<td>90x8</td>
<td>4.89</td>
<td>3.43</td>
</tr>
<tr>
<td>100x8</td>
<td>6.03</td>
<td>4.68</td>
</tr>
<tr>
<td>110x8</td>
<td>8.74</td>
<td>6.20</td>
</tr>
<tr>
<td>120x8</td>
<td>11.18</td>
<td>7.98</td>
</tr>
</tbody>
</table>

Note: Table based on post restrained by the masonry.
Properties and Recommended Loads for Parapet Posts to EN 1993
Ancon Parapet Posts are designed according to EN 1993 for a maximum deflection of height/180. The tables below indicate the maximum uniformly distributed design load and the maximum point load at the top.

The design resistances shown should be compared to factored loads. Posts should be selected from the appropriate table. If the post is to be designed for both uniformly distributed and point loads, please contact our Technical Services Team.

Performance of WP2P parapet posts to EN 1993 under uniformly distributed load

<table>
<thead>
<tr>
<th>Size a x b x t</th>
<th>0.8m</th>
<th>Design Resistance (kN) per Post (uniformly distributed) for Various Parapet Post Lengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>125x70x4</td>
<td>6.75</td>
<td>6.33, 6.51, 6.58, 6.86, 3.95, 3.21, 3.02</td>
</tr>
<tr>
<td>140x70x4</td>
<td>6.75</td>
<td>6.75, 6.75, 6.75, 6.75, 6.75, 6.75, 6.75</td>
</tr>
<tr>
<td>150x70x4</td>
<td>6.75</td>
<td>7.40, 6.34, 5.55, 4.33, 5.83, 5.05</td>
</tr>
<tr>
<td>170x70x4</td>
<td>6.75</td>
<td>8.00, 7.00, 5.00, 6.22, 5.80</td>
</tr>
<tr>
<td>160x70x5</td>
<td>6.75</td>
<td>9.00, 8.97, 7.94, 7.06, 6.35</td>
</tr>
<tr>
<td>150x70x6</td>
<td>6.75</td>
<td>9.00, 9.79, 8.57, 7.61, 6.85</td>
</tr>
<tr>
<td>170x70x6</td>
<td>6.75</td>
<td>9.00, 10.15, 8.88, 7.92, 7.11</td>
</tr>
<tr>
<td>180x70x6</td>
<td>6.75</td>
<td>9.00, 11.25, 9.88, 8.78, 7.90</td>
</tr>
<tr>
<td>150x80x6</td>
<td>6.75</td>
<td>9.00, 11.25, 13.13, 11.05, 9.47</td>
</tr>
<tr>
<td>170x80x6</td>
<td>6.75</td>
<td>9.00, 12.66, 11.25, 10.13, 10.13</td>
</tr>
<tr>
<td>180x80x6</td>
<td>6.75</td>
<td>9.00, 13.25, 13.50, 13.50, 12.52</td>
</tr>
</tbody>
</table>

Note: Table based on tie spacing of 258mm, ties on each leg, no vertical movement joint and long leg restrained by the masonry. Figures in **bold** indicate capacity limited by tie capacity.

Performance of WP2P parapet posts to EN 1993 under point load

<table>
<thead>
<tr>
<th>Size a x b x t</th>
<th>0.8m</th>
<th>Design Resistance (kN) at Top of Parapet Post for Various Lengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>125x70x4</td>
<td>3.95</td>
<td>3.16, 2.83, 2.24, 1.82, 1.51, 1.27</td>
</tr>
<tr>
<td>140x70x4</td>
<td>4.88</td>
<td>3.90, 3.25, 2.79, 2.36, 1.97, 1.66</td>
</tr>
<tr>
<td>150x70x4</td>
<td>5.55</td>
<td>4.44, 3.70, 3.17, 2.77, 2.31, 1.96</td>
</tr>
<tr>
<td>130x70x6</td>
<td>6.55</td>
<td>5.24, 4.37, 3.73, 3.05, 2.54, 2.15</td>
</tr>
<tr>
<td>170x70x4</td>
<td>7.00</td>
<td>5.60, 4.66, 4.00, 3.50, 3.08, 2.62</td>
</tr>
<tr>
<td>160x70x5</td>
<td>7.14</td>
<td>6.35, 5.29, 4.53, 3.97, 3.39, 2.88</td>
</tr>
<tr>
<td>150x70x6</td>
<td>8.57</td>
<td>6.85, 5.71, 4.89, 4.22, 3.54, 3.01</td>
</tr>
<tr>
<td>170x70x6</td>
<td>8.88</td>
<td>7.11, 5.92, 5.07, 4.44, 3.88, 3.31</td>
</tr>
<tr>
<td>160x70x7</td>
<td>9.87</td>
<td>7.90, 6.58, 5.64, 4.94, 4.39, 3.77</td>
</tr>
<tr>
<td>150x80x6</td>
<td>11.55</td>
<td>11.36, 8.75, 6.99, 5.74, 4.80, 4.09</td>
</tr>
<tr>
<td>170x70x6</td>
<td>12.95</td>
<td>12.13, 9.44, 7.64, 6.34, 5.62, 4.85</td>
</tr>
<tr>
<td>180x70x6</td>
<td>20.12</td>
<td>14.82, 11.48, 9.22, 7.60, 6.39, 5.45</td>
</tr>
<tr>
<td>180x80x6</td>
<td>22.58</td>
<td>16.69, 12.97, 10.44, 8.82, 7.26, 6.21</td>
</tr>
</tbody>
</table>

Note: Table based on the post having ties on each leg, no vertical movement joint, long leg restrained by the masonry and with top rail or other such connection transferring the point load to the top of the post.

Performance of WP3P parapet posts to EN 1993 under uniformly distributed load

<table>
<thead>
<tr>
<th>Size a x b x t</th>
<th>0.8m</th>
<th>Design Resistance (kN) per Post (uniformly distributed) for Various Parapet Post Lengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>35x40x4</td>
<td>4.43</td>
<td>4.13, 2.95, 2.19, 1.69, 1.24, 1.08</td>
</tr>
<tr>
<td>50x40x4</td>
<td>4.43</td>
<td>4.43, 3.49, 2.59, 1.99, 1.58, 1.28</td>
</tr>
<tr>
<td>65x40x4</td>
<td>4.43</td>
<td>4.43, 4.22, 3.18, 2.46, 1.96, 1.59</td>
</tr>
<tr>
<td>65x40x5</td>
<td>4.43</td>
<td>4.43, 5.05, 3.78, 2.92, 2.32, 1.88</td>
</tr>
<tr>
<td>75x40x4</td>
<td>4.43</td>
<td>4.43, 5.67, 4.32, 3.38, 2.70, 2.20</td>
</tr>
<tr>
<td>75x40x5</td>
<td>4.43</td>
<td>4.43, 5.90, 5.18, 4.04, 3.22, 2.62</td>
</tr>
<tr>
<td>85x40x6</td>
<td>4.43</td>
<td>4.43, 5.90, 5.52, 4.22, 3.55, 2.91</td>
</tr>
<tr>
<td>85x40x5</td>
<td>4.43</td>
<td>4.43, 5.90, 5.52, 4.22, 3.55, 2.91</td>
</tr>
</tbody>
</table>

Note: Table based on restrained parapet post with tie spacing of 258mm. Figures in **bold** indicate capacity limited by tie capacity.

Performance of WP3P parapet posts to EN 1993 under point load

<table>
<thead>
<tr>
<th>Size a x b x t</th>
<th>0.8m</th>
<th>Design Resistance (kN) at Top of Parapet Post for Various Lengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>35x40x4</td>
<td>2.45</td>
<td>1.61, 1.12, 0.83, 0.63, 0.50, 0.40</td>
</tr>
<tr>
<td>50x40x4</td>
<td>2.90</td>
<td>1.90, 1.33, 0.97, 0.75, 0.59, 0.48</td>
</tr>
<tr>
<td>65x40x4</td>
<td>3.47</td>
<td>2.32, 1.64, 1.21, 0.93, 0.73, 0.59</td>
</tr>
<tr>
<td>65x40x5</td>
<td>4.15</td>
<td>2.76, 1.95, 1.44, 1.10, 0.87, 0.71</td>
</tr>
<tr>
<td>75x40x4</td>
<td>4.51</td>
<td>3.14, 2.25, 1.67, 1.29, 1.02, 0.83</td>
</tr>
<tr>
<td>75x40x5</td>
<td>5.56</td>
<td>3.78, 2.69, 2.00, 1.54, 1.22, 0.99</td>
</tr>
<tr>
<td>85x40x5</td>
<td>5.80</td>
<td>4.06, 2.95, 2.21, 1.71, 1.36, 1.10</td>
</tr>
<tr>
<td>85x40x6</td>
<td>7.11</td>
<td>4.91, 3.55, 2.65, 2.05, 1.63, 1.32</td>
</tr>
</tbody>
</table>

Note: Table based on restrained parapet post with top rail or other such connection transferring the point load to the top of the post.
Worldwide contacts for Leviat:

Australia
Leviat
98 Kurrajong Avenue,
Mount Druitt Sydney, NSW 2770
Tel: +61 - 2 8808 3100
Email: info.au@leviat.com

Austria
Leviat
Leonard-Bernstein-Str. 10
Saturn Tower, 1220 Wien
Tel: +43 - 1 - 259 6770
Email: info.at@leviat.com

Belgium
Leviat
Industrialaan 2
1740 Ternat
Tel: +32 - 2 - 582 29 45
Email: info.be@leviat.com

China
Leviat
Room 601 Tower D, Vantone Centre
No. A6 Chao Yang Men Wai Street
Chaoyang District
Beijing · P.R. China 100020
Tel: +86 - 10 5907 3200
Email: info.cn@leviat.com

Czech Republic
Leviat
Business Center Šafránkova
Šafránkova 1238/1
155 00 Praha 5
Tel: +420 - 311 - 690 060
Email: info.cz@leviat.com

Finland
Leviat
Väderstugatan 5
412 50 Göteborg / Sweden
Tel: +358 (0)10 6338781
Email: info.fi@leviat.com

France
Leviat
6, Rue de Cabanis
FR 31240 L’Union
Toulouse
Tel: +33 - 5 - 34 25 54 82
Email: info.fr@leviat.com

Germany
Leviat
Liebigstrasse 14
40764 Langenfeld
Tel: +49 - 2173 - 970 - 0
Email: info.de@leviat.com

India
Leviat
309, 3rd Floor, Orion Business Park
Ghodbunder Road, Kapurbawdi,
Thane West, Thane,
Maharashtra 400607
Tel: +91 - 22 2589 2032
Email: info.in@leviat.com

Italy
Leviat
Via F.Lli Bronzetti 28
24124 Bergamo
Tel: +39 - 035 - 076071
Email: info.it@leviat.com

Malaysia
Leviat
28 Jalan Anggerik Mokara 31/59
Kota Kemuning, 40460 Shah Alam
Selangor
Tel: +603 - 5122 4182
Email: info.my@leviat.com

Netherlands
Leviat
Oostermaat 3
7623 CS Borne
Tel: +31 - 74 - 267 14 49
Email: info.nl@leviat.com

New Zealand
Leviat
2/19 Nuttall Drive, Hillsborough,
Christchurch 8022
Tel: +64 - 3 376 5205
Email: info.nz@leviat.com

Norway
Leviat
Vestre Svanholmen 5
4313 Sandnes
Tel: +47 - 51 82 34 00
Email: info.no@leviat.com

Philippines
Leviat
2933 Regus, Joy Nostalg,
ABD Avenue
Ortigas Center
Pasig City
Tel: +63 - 2 7957 6381
Email: info.ph@leviat.com

Poland
Leviat
Ul. Obornicka 287
60-691 Poznan
Tel: +48 - 61 - 622 14 14
Email: info.pl@leviat.com

Singapore
Leviat
14 Benoi Crescent
Singapore 629977
Tel: +65 - 6266 6802
Email: info.sg@leviat.com

Spain
Leviat
Polígono Industrial Santa Ana
c/ Ignacio Zuloaga, 20
28822 Rivas-Vaciamadrid
Tel: +34 - 91 632 18 40
Email: info.es@leviat.com

Sweden
Leviat
Väderstugatan 5
412 50 Göteborg
Tel: +46 - 31 - 98 58 00
Email: info.se@leviat.com

Switzerland
Leviat
Grenzstrasse 24
3250 Lyss
Tel: +41 - 31 750 3030
Email: info.ch@leviat.com

United Kingdom
Leviat
President Way, President Park,
Sheffield, S4 7UR
Tel: +44 - 114 275 5224
Email: info.uk@leviat.com

United States of America
Leviat
6467 S Falkenburg Rd.
Riverview, FL 33578
Tel: (800) 423-9140
Email: info.us@leviat.us

For countries not listed
Email: info@leviat.com

Leviat.com

Notes regarding this catalogue
© Protected by copyright. The construction applications and details provided in this publication are indicative only. In every case, project working details should be entrusted to appropriately qualified and experienced persons. Whilst every care has been exercised in the preparation of this publication to ensure that any advice, recommendations or information is accurate, no liability or responsibility of any kind is accepted by Leviat for inaccuracies or printing errors. Technical and design changes are reserved. With a policy of continuous product development, Leviat reserves the right to modify product design and specification at any time.
For more information on the following products, please contact:

Masonry, Structural and Precast Concrete products:
1300 304 320
info.ancon.au@leviat.com
Ancon.com.au

Concrete Floor Jointing products:
1800 335 215
info.connolly.au@leviat.com
Connolly.com.au
info.isedio.au@leviat.com
lsedio.com.au

Remedial Masonry products:
1300 667 071
info.helifix.au@leviat.com
Helifix.com.au

General Enquiries
1300 304 320
Leviat.com

Sales Offices and Production
New South Wales, Sydney
98 Kurrajong Avenue
Mount Druitt | Sydney
NSW 2770

Queensland
4/15 Terrace Place
Murarrie | Brisbane
QLD 4172

New South Wales, Casino
10 Irving Drive
Casino
NSW 2470

Western Australia
18 Tennant Street
Welshpool | Perth
WA 6106

Victoria
9/63-69 Pipe Road
Laverton North | Melbourne
VIC 3026