The Use of Stainless Steel in the Construction Industry
This brochure is printed on paper produced from 80% recycled post-consumer fibre and 20% virgin pulp, which is sourced from responsibly managed and sustainable forests (FSC certified). The printing inks and sealant are vegetable-based making the document fully recyclable.
Ancon designs and manufactures high integrity steel products for the construction industry. Through continuous programmes of new product development, inward investment and employee advancement, the company is committed to maintaining the highest level of customer service within a dynamic and challenging industry.

Many of Ancon’s products are manufactured from stainless steel. This material offers many advantages to the specifier and its use in the Construction Industry continues to increase. Stainless steel building products ensure a high degree of corrosion resistance without requiring additional protection and are 100% recyclable at the end of a long service life.

Masonry Support Systems
Windposts and Lintels
Wall Ties and Restrayment Fixings
Channel and Bolt Fixings
Tension Systems
Stainless Steel Fabrications
Flooring and Formed Sections
Shear Load Connectors
Stainless Steel Reinforcement
Reinforcing Bar Couplers
Reinforcement Continuity Systems
Punching Shear Reinforcement

What is Stainless Steel 4
Why Use Stainless Steel 4
Recyclability 4
Types of Stainless Steel 5
Material Specification 6
Properties and Working Stresses 7
Effect of Cold Working 7
Bi-Metallic Contact 8
Surface Finish 9
Relevant Standards 9
Ancon Products 10-11
WHAT IS STAINLESS STEEL?

Stainless steel is not a single specific material; it is the name given to a group of corrosion resistant steel alloys which contain a minimum of 10.5% chromium.

The chromium in stainless steel reacts with oxygen in the air to produce a very thin, inert, chromium rich oxide film on the surface of the steel. It is the presence of this film which provides the corrosion resistance of stainless steel.

This passive film is unlike coatings such as paint or galvanising in one very important way. If it is damaged by abrasion or mechanical means such as cutting, it re-forms and continues to protect the steel.

WHY USE STAINLESS STEEL?

Stainless steel has been used with success by the construction industry for over seventy years. Its use has increased rapidly in recent times as the benefits of stainless steel over other materials have become more widely recognised.

Stainless steel offers many advantages to the specifier:

- Excellent corrosion resistance
- Life-cycle costing benefits
- 60% Recycled content
- 100% Recyclable
- High ductility and strength
- Non-magnetic (Austenitic only)
- Excellent high and low temperature properties
- Resistance to unsightly staining
- Aesthetic surface finish

Life-cycle costing is increasingly recognised as the true way to establish the cost of building components. The maintenance-free life and confirmed integrity of stainless steel mean that no costly remedial or refurbishment measures are required during the life of the structure.

As the trend to higher specification and longer life continues, stainless steel will provide cost-effective long term solutions to specifiers’ problems.

RECYCLABILITY

Stainless steel is 100% recyclable. When a product finally reaches the end of its long service life, it remains a valuable source of its main alloying elements - chromium, nickel and molybdenum. These can be easily recovered and returned to the production process.

Stainless steel recycling is an economically viable, self-sustaining process. There are considerable savings in energy, and reduced CO₂ emissions, in production methods which use recycled materials. The amount of recycled material in any stainless steel product is typically 60%, and as scrap availability is the limiting factor, this percentage will increase as the use of stainless steel continues to grow.

The raw material produced today will not be recycled for many years.

In addition to a product’s end-of-life recycling, any scrap material generated during its manufacture is recycled in the same way. Ancon recycles 100% of its stainless steel scrap.
TYPES OF STAINLESS STEEL

Austenitic Stainless Steels
Austenitic stainless steels offer excellent resistance to corrosion. These high chromium steels are ductile and strong. They are non-magnetic and can be readily formed and welded. Higher strengths can be obtained by cold working, although this makes the metal slightly magnetic and may reduce its corrosion resistance. Austenitic stainless steels are widely used in the construction, pharmaceutical and chemical industries.

Martensitic Stainless Steels
The high carbon content of martensitic steels means they can be hardened by heat treatment; ultimate tensile strengths in excess of 2000MPa can be obtained. They are magnetic and cannot be easily welded. Although they are cheaper than austenitic steels, their low corrosion resistance limits the range of suitable applications to components such as valves, dies and knife blades.

Ferritic Stainless Steels
Ferritic steels are weaker and less ductile than austenitic steels. They are magnetic and their strength can be increased to a certain extent by cold working. Common ferritic steels are comparatively cheap, but they cannot be welded in thick sections. Generally, they have poorer resistance to pitting, but superior resistance to stress corrosion cracking than austenitics. If appearance is important, their use should be restricted to indoor applications. They are used for internal shop-fitting.

Duplex and Super Duplex Stainless Steels
These steels have a mixed austenitic/ferritic microstructure. They are stronger than austenitic steels but are not as easily formed. They are magnetic and can be welded; their corrosion resistance is better than that of austenitic steels, particularly their resistance to stress corrosion cracking. Duplex steels are used in the paper, chemical, oil and construction industries.

Ancon has the capability to fabricate all Austenitic, Duplex and Super Duplex stainless steels. Building products are normally manufactured from Austenitic stainless steels. This material is suitable for the vast majority of applications.
MATERIAL SPECIFICATION

There are many grades of stainless steel resulting in a proliferation of international specifications. The two main grades of austenitic stainless steel used in the manufacture of Ancon products are 1.4301 (304) and 1.4401 (316).

These grades of stainless steel are adequate for almost all construction applications, however grades which have even greater pitting or corrosion resistance can also be supplied. Some products are manufactured in grade 1.4462 duplex stainless steel.

In recent years, lean duplex grades have been developed to give similar pitting corrosion resistance to standard austenitic grades but with higher strength and better resistance to stress corrosion cracking e.g. grade 1.4362.

Please contact the Ancon Technical Services Team for further advice on selecting the most appropriate grade of stainless steel for your application.

All plate material meets the chemical composition and mechanical property requirements of the material standard for stainless steel, BS EN 10088.

Grade 1.4301 (304)
This austenitic grade is the most commonly used and is suitable for a broad range of construction applications. It typically contains alloying elements of at least 18% chromium and 8-10% nickel. Marginal differences in composition have no significant effect on the material’s excellent all-round corrosion resistance.

Grade 1.4401 (316)
This austenitic grade is recommended for highly corrosive areas such as marine locations or heavily polluted industrial environments. The addition of a small proportion of molybdenum (around 2%) and an increase in the nickel content to 10-13% provide a more robust passive film and hence higher resistance to corrosion.

Grade 1.4462
This is a high strength duplex stainless steel with a minimum chromium content of 22%, a nickel content of 4.5-6.5% and a molybdenum content of 2.5-3.5%. It offers superior corrosion resistance especially against pitting and crevice corrosion.

Specifications for Equivalent Grades of Stainless Steel

<table>
<thead>
<tr>
<th>EN 10088 Number</th>
<th>EN 10088 Name</th>
<th>BS 1449</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4301</td>
<td>X5CrNi 18-10</td>
<td>304S15</td>
</tr>
<tr>
<td>1.4306</td>
<td>X5CrNi 19-11</td>
<td>304S16</td>
</tr>
<tr>
<td>1.4401</td>
<td>X5CrNiMo 17-12-2</td>
<td>316S31</td>
</tr>
<tr>
<td>1.4404</td>
<td>X5CrNiMo 17-12-2</td>
<td>316S33</td>
</tr>
<tr>
<td>1.4432</td>
<td>X5CrNiMo 17-12-3</td>
<td>316S11</td>
</tr>
<tr>
<td>1.4462</td>
<td>X2CrNiMoN 22-5-3</td>
<td>-</td>
</tr>
</tbody>
</table>
PROPERTIES AND WORKING STRESSES

The behaviour of constructional stainless steels differs from mild steels in that these stainless steels do not exhibit a well defined yield point when representative test pieces are submitted to tensile load.

A true yield point is obtained in mild steel when plastic deformation starts to occur without any increase in loading. The stress in the test piece at the yield point is known as the yield strength of the material.

Constructional grades of stainless steel show early plastic deformation in test, but continue to sustain increasing load with increasing strain. In order to characterise the useful design strength of such materials, proof strengths are used and are determined as the stress \((R_p)\) at which plastic extension equals a specified strain. For stainless steels this is commonly at 0.2% strain and the proof strength for a particular grade of steel is based on the \((R_p)\) 0.2% proof stress.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Alloying Elements</th>
<th>Applications</th>
<th>Minimum 0.2% Proof Stress ((R_p)) (MPa)</th>
<th>Ultimate Tensile Strength ((R_m)) (MPa)</th>
<th>Elongation After Fracture (%)</th>
<th>Working Stresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4301 (304)</td>
<td>Chromium-nickel steel (Basic stainless steel)</td>
<td>Suitable for rural, urban and light industrial sites. Regular washing down is recommended for exposed architectural features to maintain a good appearance.</td>
<td>210</td>
<td>520 - 720</td>
<td>45</td>
<td>140</td>
</tr>
<tr>
<td>1.4306 (304L)</td>
<td>Low carbon chromium-nickel steel (Lower carbon content improves resistance to intergranular corrosion of thick sections following welding)</td>
<td>Not suitable for exposure in heavily polluted industrial or coastal sites. Low carbon grade need only be considered for welded fabrications involving plates thicker than 16-20mm depending on the welding procedure.</td>
<td>200</td>
<td>500 - 650</td>
<td>45</td>
<td>133</td>
</tr>
<tr>
<td>1.4401 (316)</td>
<td>Chromium-nickel-molybdenum steel (Molybdenum greatly improves overall corrosion resistance and especially pitting resistance)</td>
<td>Suitable for industrial and coastal sites. Tamishing or staining may occur; regular washing down is recommended for exposed architectural features to maintain a good appearance.</td>
<td>220</td>
<td>520 - 670</td>
<td>45</td>
<td>146</td>
</tr>
<tr>
<td>1.4404, 1.4432 (316L)</td>
<td>Low carbon chromium-nickel-molybdenum steel (Lower carbon content improves resistance to intergranular corrosion of thick sections following welding)</td>
<td>Low carbon grade need only be considered for welded fabrications involving plates thicker than 16-20mm depending on the welding procedures.</td>
<td>220</td>
<td>520 - 670</td>
<td>45</td>
<td>146</td>
</tr>
<tr>
<td>1.4462</td>
<td>Low carbon, high chromium-nickel-molybdenum steel, with an austenitic-ferritic microstructure</td>
<td>Suitable for applications where high strength is required or where pitting and crevice corrosion are likely to occur.</td>
<td>460</td>
<td>640 - 840</td>
<td>25</td>
<td>306</td>
</tr>
</tbody>
</table>

Notes: The properties and design stresses are for hot rolled plate to EN 10088. Ancon is able to use higher stresses in accordance with S.C.I. recommendations in the “Structural Design of Stainless Steel”, available from the Steel Construction Institute, Silwood Park, Ascot, Berkshire SL5 7QH, United Kingdom (www.steel-sci.org).

EFFECT OF COLD WORKING

The working of austenitic stainless steel significantly increases the proof strength. Localised cold working arises during the forming of angle and channel sections. The benefits of this cold working are not taken into account in Ancon’s designs, but provide additional reserves of strength.
BI-METALLIC CONTACT
When two dissimilar metals are in contact in the presence of an electrolyte, bi-metallic corrosion may occur. This may result in the corrosion of the base metal while the noble metal is protected. Where contact is unavoidable and moisture is likely to be present, the two metals should be separated.

The table of recommendations indicates which metals may, in certain circumstances, be used together.

The degree of corrosion resulting from bi-metallic contact depends collectively upon:
- The metals in contact
- The environmental conditions
- The time that the contact remains wet or moist
- The relative surface areas of the anodic (carbon steel) and cathodic (stainless steel) metals

Prevention is possible by excluding water from the detail (painting or taping over the assembled joint) or by isolating the metals from each other (painting the contact surfaces of the dissimilar metals or using isolation patches). Isolation around bolted connections can be achieved by non-conductive waterproof gaskets and nylon or Teflon washers and bushings.

The general behaviour of metals in bi-metallic contact in rural, urban, industrial and coastal environments is fully documented in PD 6484: Commentary on corrosion at bi-metallic contacts and its alleviation.

Metals

<table>
<thead>
<tr>
<th></th>
<th>Stainless Steel</th>
<th>Mild Steel</th>
<th>Aluminium Bronze</th>
<th>Phosphor Bronze</th>
<th>Copper</th>
<th>Cast Iron</th>
<th>Aluminium</th>
<th>Zinc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stainless Steel</td>
<td>✔</td>
<td>✖</td>
<td>✔</td>
<td>✖</td>
<td>✔</td>
<td>✔</td>
<td>✖</td>
<td>✖</td>
</tr>
<tr>
<td>Mild Steel</td>
<td>✖</td>
<td>✔</td>
<td>✖</td>
<td>✖</td>
<td>✖</td>
<td>✖</td>
<td>✖</td>
<td>✖</td>
</tr>
<tr>
<td>Aluminium Bronze</td>
<td>✔</td>
<td>✖</td>
<td>✔</td>
<td>✔</td>
<td>✖</td>
<td>✖</td>
<td>✖</td>
<td>✖</td>
</tr>
<tr>
<td>Phosphor Bronze</td>
<td>✔</td>
<td>✖</td>
<td>✔</td>
<td>✔</td>
<td>✖</td>
<td>✖</td>
<td>✖</td>
<td>✖</td>
</tr>
<tr>
<td>Copper</td>
<td>☑</td>
<td>✖</td>
<td>✖</td>
<td>✔</td>
<td>✖</td>
<td>✖</td>
<td>✖</td>
<td>✖</td>
</tr>
<tr>
<td>Cast Iron</td>
<td>✖</td>
<td>✔</td>
<td>✖</td>
<td>✔</td>
<td>✖</td>
<td>✖</td>
<td>✖</td>
<td>✖</td>
</tr>
<tr>
<td>Aluminium</td>
<td>✖</td>
<td>✖</td>
<td>✔</td>
<td>✔</td>
<td>✖</td>
<td>✖</td>
<td>✔</td>
<td>✖</td>
</tr>
<tr>
<td>Zinc</td>
<td>☑</td>
<td>✖</td>
<td>✖</td>
<td>✔</td>
<td>✖</td>
<td>✖</td>
<td>✔</td>
<td>✖</td>
</tr>
</tbody>
</table>

Key
- ✔ Can be used in contact under all conditions.
- ✖ Should not be used in contact.
- ✖✖✖✖✖ Can be used in contact under dry conditions (i.e. cast-in, or within a cavity above d.p.c. level except where the cavity is used for free drainage).
- ✖✖✖✖✖✖ Can be used in contact under dry conditions (i.e. cast-in, or within a cavity above d.p.c. level except where the cavity is used for free drainage).
SURFACE FINISH
The surface finish of stainless steel can vary from a matt descaled finish used for construction fixings to a bright highly polished finish.

Mill Finishes
- Hot rolled, softened and descaled (normally used on thicknesses of 4mm, 5mm, 6mm, 8mm and 10mm)
- Cold rolled
- Cold rolled and lightly rolled on polishing rolls
- Bright annealed

Polished Finishes
- Electropolished
- Satin Finish
- Bead Blast

Products supplied by Ancon will usually be in the hot rolled, softened and pickled mill finish 1D to EN 10088 - 2. If a different finish is required, please contact Ancon’s Technical Services Team.

Where a surface finish is of primary importance, pre-production samples should be produced and agreed. In some aesthetic or highly corrosive applications a cleaning or maintenance programme may be applicable.

RELEVANT STANDARDS
The Standards in the adjacent table are relevant to the design of stainless steel construction products.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS/NZS 2699.1: 2000</td>
<td>Built-in components for masonry construction. Pt 1 Wall Ties</td>
</tr>
<tr>
<td>AS/NZS 2699.3: 2002</td>
<td>Built-in components for masonry construction. Pt 3 Lintels and shelf angles</td>
</tr>
<tr>
<td>AS 3700-2001</td>
<td>Masonry structures</td>
</tr>
<tr>
<td>AS/NZS 4673: 2001</td>
<td>Cold-formed stainless steel structures</td>
</tr>
<tr>
<td>BS EN 845-1: 2003</td>
<td>Specification for ancillary components for masonry. Ties, tension straps, hangers and brackets</td>
</tr>
<tr>
<td>BS 5628-1: 2005</td>
<td>Code of practice for the use of masonry. Structural use of unreinforced masonry</td>
</tr>
<tr>
<td>BS 5628-3: 2005</td>
<td>Code of practice for masonry: Materials and components, design and workmanship</td>
</tr>
<tr>
<td>BS 8298: 1994</td>
<td>Code of practice for design and installation of natural stone cladding and lining</td>
</tr>
<tr>
<td>BS 6744: 2001</td>
<td>Stainless steel bars for the reinforcement of and use in concrete</td>
</tr>
<tr>
<td>BS EN ISO 3506-1: 1998</td>
<td>Mechanical properties of corrosion-resistant stainless steel fasteners. Bolts, screws and studs</td>
</tr>
</tbody>
</table>
ANCON BUILDING PRODUCTS
Ancon has a wealth of experience in working with a range of types and grades of stainless steel. Products are manufactured from wire, coil, plate and bar. Considerable material stocks are maintained in order to meet urgent delivery deadlines.

Technical Advice
The use of stainless steel offers many advantages to the specifier. Ancon will advise on the most appropriate and cost-effective solution to suit individual applications.

Masonry Support and Restraint Fixings
Ancon fixings for masonry cladding are usually manufactured from grade 1.4301 (304) stainless steel which is suitable for most building applications. In particularly corrosive environments, or where part of the fixing is exposed, grade 1.4401 (316) should be considered.

Structures with brick or stone cladding will usually necessitate the use of stainless steel support for the masonry. Ancon Support Systems are fixed to the structural frame, span the cavity and form a horizontal shelf in the outer leaf. Ancon Windposts span vertically between floors to provide lateral support for large panels of brickwork or panels with openings.

The standard range of Ancon Lintels suits the majority of loading conditions found in residential and commercial buildings. Special lintels can be manufactured to suit architectural features and wall construction not covered by the standard range.

Wall ties and other restraint fixings are an essential element in the stability of masonry panels. Traditionally, wall ties were manufactured from galvanised mild steel. They were expected to last the lifetime of the building, but some corroded after only 15 years. The confirmed integrity of stainless steel means no costly remedial action will be required.
Tension Systems
Tension Bar Systems are increasingly being used in structures and buildings as an architectural as well as a structural element. A variety of assemblies can be created from simple tie bars to complex bracing systems involving several bars joined at one point. The Ancon Tension System is available in carbon and stainless steel. The latter is recommended for applications demanding corrosion resistance, a maintenance-free life and where a highly polished finish is required.

Shear Load Connectors
Ancon Shear Connectors are used to transfer load across movement joints in concrete. Each connector is a two-part assembly comprising a sleeve and a dowel component. The sleeve is nailed to the formwork ensuring subsequent alignment with the dowel. This alignment is essential for effective movement. Dowels are manufactured from duplex stainless steel to ensure a high degree of corrosion resistance with no requirement for additional protection.

Reinforcing Bar
Ancon supplies stainless steel plain and ribbed reinforcing bar direct from stock. Grade 1.4301 (304), grade 1.4436 (316) and, increasingly, duplex grades are readily available.

Floorplate and Open Grid Flooring
Ancon’s stainless steel floorplate and open grid flooring are ideal for environments where corrosion resistance, hygiene, durability and slip resistance are essential. This flooring is suitable for a wide variety of industries including chemical, marine engineering, catering and pharmaceutical. When required, floorplates can be supplied with a polished surface finish.

Special Fabrications
Ancon has the capability to fabricate all Austenitic, Duplex and Super Duplex stainless steels in a plate thickness of up to 30mm. Special fabrications are supplied to industries such as civil and marine engineering, water treatment, petrochemical and food handling.
The construction applications and details provided in this literature are indicative only. In every case, project working details should be entrusted to appropriately qualified and experienced persons.

Whilst every care has been exercised in the preparation of this document to ensure that any advice, recommendations or information is accurate, no liability or responsibility of any kind is accepted in respect of Ancon Building Products.

With a policy of continuous product development Ancon Building Products reserves the right to modify product design and specification without due notice.

These products are available from:

© Ancon Building Products 2008

This brochure is printed on paper produced from 80% recycled post-consumer fibre and 20% virgin pulp which is sourced from responsibly managed and sustainable forests (FSC certified). The printing ink and sealant are vegetable-based making the document fully recyclable.

ISO 9001: 2000
FM 12226
ISO 14001: 2004
EMS 505377